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Topics
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Absorption-based imaging

How to attenuate a neutron beam: absorption vs.
scattering (in brief)

Geometrical principles: L/D

Neutron collimation and exposure time

Main differences between x-ray and neutron imaging
Neutron imaging domain: big objects, hydrogen...
Neutron conversion to light

Thermal and cold neutrons: pros and cons

A taste of more advanced neutron imaging techniques
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(23 What is neutron imaging

Problem:
You have an object

You want to know what'’s inside this object (even the
composition)

You also want to know how much of it is inside

And for some reasons you want to use neutrons (we’ll see
why later)
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™ What is neutron imaging

Solution:
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w1 = What is neutron imaging

Solution:

Get yourself one of these:
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w1 = What is neutron imaging

Solution:

Or one of these:
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™ What is neutron imaging

Moderate and transport the resulting neutrons
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Target
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See presentations from E. Lehmann and M. Strobl about this




SRS What is neutron imaging

Measure!

Source Collimation Object Detector
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™ What is neutron imaging

Measure!

Source Collimation Object Detector

It's a little bit more complex than this...
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Attenuation-based imaging

Problem:

lo

—
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w1 = Attenuation-based imaging

15t let’s divide the bulk into thin (differential) slices
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o = Attenuation-based imaging

Let’s consider one slab at a time (we’ll sum the
effect of each of them eventually)

| _
0 |=Iy+dlI

) —
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w1 = Attenuation-based imaging

In reality, a slab is made of discrete attenuators
separated by vacuum

\ =l +dl

; \
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o = Attenuation-based imaging

In reality, a slab is made of discrete attenuators
separated by vacuum

\ =l +dl

: \
-y ', —

The area of each attenuator is called the
(microscopic) cross section o




IIIIIIIIIIIIIIIIIIII

Attenuation-based imaging

If we have N absorber per unit volume and the slab
has a thickness of dx

lo

—

we Cahn express

=l +dl

dl = —I,-N(x)-o(x)-dx
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o = Attenuation-based imaging

We can solve the equation and integrate over the
thickness t:

dl = —Iy-N-0-dx
dI/IO=_N.O-.dx

I t
al; _ o
fm /IO—fO—chdx

[ =I,e" [J N(x)-o(x)-dx
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w1 = Attenuation-based imaging

We can solve the equation and integrate over the
thickness t:

dl = —Iy-N-0-dx
dI/IO=_N.O-.dx

I t
al; _ o
fm /IO—fO—chdx

£
| = Ioe—fo N(x)-o(x)dx Beer-Lambert law
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w1 = Attenuation-based imaging

We can solve the equation and integrate over the
thickness t:

dl = —Iy-N-0-dx
| - R
d/lo__N o-dx

I t
dl ; _ o
»[IO /IO—fO—Nadx

t
| = IOe—fO N(x)-o(x):dx Beer-Lambert law

[ =lye” Zif(f Ni(x)oi(x)dx For several absorbers
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(=3 Attenuation-based imaging

[ =Iye [T N(x)-0(x)-dx

§

I(i»f) = Io(i,j)e_fC N (i,j)(x)-0 i, j)(x)-dx

With “C” the line, of length t, in front of pixel (i,))
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Attenuation-based

TS S

7 VAV AV Ay Ayayi S S S S S S
7 S S S S S
S T T 7T 7 7 7 7 77 7 7 7 7 7 77 77 7
f S S Va4 VAV VAV AVAYAs
/ 7 77 VAV AV AV Eyays
YAV AV Ay Ay VAV AV VAV
S T T 7 7777 A4 /7
S LSS ST S S v
yavi VAV AV AV Ay 7
ST S S S /

VAV AV Ay AyAeys

/

PAUL SCHERRER INSTITUT




PAUL SCHERRER INSTITUT
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w1 w Attenuation-based imaging

10s exposure

200 400 600 800

From this to quantification of the amount of material
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w1 = Attenuation-based imaging

A number of assumptions have been made:
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(=3 Attenuation-based imaging

A number of assumptions have been made:
1. The absorbers are independent on each other

2. The absorbers are “diluted” e.g. they do not
shadow each other from one slab to the other

3. The attenuation does not depend on the
wavelength or the beam is monochromatic

4. The beam is somewhat parallel

5. The absorbers are not influenced by the
radiation (i.e. no fission in the material)

6. No scattering is present
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(=3 Attenuation-based imaging

For (thermal and cold) neutrons:

The absorbers are independent on
each other

The absorbers are “diluted” e.g. they
do not shadow each other from one
slab to the other

The attenuation does not depend on
the wavelength or the beam is
monochromatic

The beam is somewhat parallel

The absorbers are not influenced by
the radiation (i.e. no fission in the
material)

No scattering is present
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For (thermal and cold) neutrons:

(7

The absorbers are independent on L
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(=3 Attenuation-based imaging

For (thermal and cold) neutrons:
(7

The absorbers are independent on L
SO True for most applications

each other

The absorbers are “diluted” e.g. they /
do not shadow each other from one True for most elements

slab to the other

The attenuation does not depend on The equation needs to be
N hs

the wavelength or the beam is modified:
t rAmax
monochromatic [ = Iye o Simin NOIo(xA)dxd2

The beam is somewhat parallel

The absorbers are not influenced by
the radiation (i.e. no fission in the
material)

No scattering is present
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(=3 Attenuation-based imaging

The absorbers are independent on
each other

The absorbers are “diluted” e.g. they
do not shadow each other from one
slab to the other

The attenuation does not depend on
the wavelength or the beam is
monochromatic

The beam is somewhat parallel

The absorbers are not influenced by
the radiation (i.e. no fission in the
material)

No scattering is present

For (thermal and cold) neutrons:

(7

gj&.‘.s True for most applications

u .- aya ,.. afjayaya ANAY~A

Also beam hardening
J.
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(=3 Attenuation-based imaging

The absorbers are independent on
each other

The absorbers are “diluted” e.g. they
do not shadow each other from one
slab to the other

The attenuation does not depend on
the wavelength or the beam is
monochromatic

The beam is somewhat parallel

The absorbers are not influenced by
the radiation (i.e. no fission in the
material)

No scattering is present

For (thermal and cold) neutrons:

(7

gé.‘.s True for most applications

7,
True for most elements

I The equation needs to be
@ modified:

[ = e N ffm.“" N(x)o(x,A)dxdA
— 0 min

(7
(Almost) true for imaging
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(=3 Attenuation-based imaging

For (thermal and cold) neutrons:
(7

The absorbers are independent on L
SO True for most applications

each other

The absorbers are “diluted” e.g. they /
do not shadow each other from one True for most elements

slab to the other

The attenuation does not depend on The .e.quation needs to be
the wavelength or the beam is N EII' modified:

Ama
monochromatic [ = [e o T NGo(A)dxaz

(7
The beam is somewhat parallel (Almost) true for imaging
The absorbers are not influenced by "
the radiation (i.e. no fission in the gﬁ.ﬁ True for most elements
material)

No scattering is present
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(=3 Attenuation-based imaging

The absorbers are independent on
each other

The absorbers are “diluted” e.g. they
do not shadow each other from one
slab to the other

The attenuation does not depend on
the wavelength or the beam is
monochromatic

The beam is somewhat parallel

The absorbers are not influenced by
the radiation (i.e. no fission in the
material)

No scattering is present

For (thermal and cold) neutrons:

(7

._,,c:&.‘.s True for most applications

(D

7,
True for most elements

I The equation needs to be
= modified:

[ =l.e f; ffm.“" N(x)a(x,A)dxdA
— 10 min

(7
(Almost) true for imaging

(7

ALs :
- Plain wrong for most
/)
elements
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I Normalized absorption cross section

B Normalized scattering cross section
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How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

Absorbtion

Scattering . .- Transmission . -
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_pe ™ Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

2. Flat samples are easier Detector
Sample

Neutrons

Assume 4 11 scatterer (red) =

The pixel-wise solid angle
quickly becomes small
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_pe ™ Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

2. Flat samples are easier Detector
Sample

Neutrons

Assume 4 11 scatterer (red) =

The pixel-wise solid angle
guickly becomes small=>

The cross talk quickly tapers off
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-] = Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

2. Flat samples are easier

3. Measure far away from the detector Detector

Neutrons Sample
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-] Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

2. Flat samples are easier

MCP

Measure far away from the detector Detector

Use scattering rejection

NeutrgRs Sample

¢
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-] = Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

Flat samples are easier
Measure far away from the detector

Use scattering rejection

a k~ 0D

Modelling tools and simulations for ex-post correction

See presentation of P. Vontobel about this @

RN
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-] Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

Flat samples are easier
Measure far away from the detector
Use scattering rejection

Modelling tools and simulations for ex-post correction

o 0k~ WD

Measure it! (Neutron Grating Interferometry)

See presentation of B. Betz about this
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-] Absorption vs. Scattering

How to solve this problem:

1. Accept it: quantification of highly scattering elements through
Imaging is difficult

Flat samples are easier
Measure far away from the detector
Use scattering rejection

Modelling tools and simulations for ex-post correction

o 0k~ WD

Measure it! (Neutron Grating Interferometry)

Seems the easiest! Let's do that!
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Depends on what you want to end up with:
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R ™ Geometric principles

Depends on what you want to end up with:

This or this
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_pe ™ Geometric principles

The reason is: the neutron beam is never parallel




PAUL SCHERRER INSTITUT

_pe ™ Geometric principles

The reason is: the neutron beam is never parallel

 penumbrabluring | d




PAUL SCHERRER INSTITUT

= = Geometric principles

The reason is: the neutron beam is never parallel

 onumbrabluring || d

| e EEE——— o ——|
Penum__b_ra_bfurrrng
L
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(=3 Geometric principles

Edge at distance =0 cm  Edge at distance =1 cm  Edge at distance =2 cm  Edge at distance = 4 cm

-1 -1 -1 -1
€ € £ €
E O £ 0 £ 0 £ 0
c c c c
2 1 2 1 2 1 2 1
o o o o
a2 a2 a 2 a2
-1 0 1 2 -1 0 1 2 1 0 1 2 1 0 1 2
Position [mm] Position [mm] Position [mm] Position [mm]

Edge at distance = 8 cm Edge at distance = 16 cm Edge at distance = 24 cm Edge at distance = 32 cm

-1
E E E £
E O E E E
c c c c
2 1 2 2 =
o o o o
o 2 o 2 T 2 a 2
4 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2

Position [mm] Position [mm] Position [mm] Position [mm]
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= = Geometric principles

The reason is: the neutron beam is never parallel

 onumbrabluring || d

| e EEE——— o ——|
Penum__b_ra_bfurrrng
L
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o= Geometric principles
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w1 e Geometric principles

The reason is: the neutron beam is never parallel

Ma

_ ponumbra b‘”’r'ingJ

Minimize these!

Minimize this! o .
Maximize this!
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- Geometric principles

Minimize these! L

D ) e - 1

~ Maximize this! | S e,

Minimize this!
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R ™ Geometric principles

Minimize these! orurmora burng | d

D — |

~ Maximize this! | S P,

Minimizing | is your first choice!

Minimize this!
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_pe ™ Geometric principles

Minimize these! orumora g | &

D - |

~ M aXI m IZ e th |S ' | L Penumbrs blurring

Minimizing | is your first choice!

Minimize this!

...but it only gets you so far
Gd edge at 160mm

Divergent

beam

Gd edge at 3mm

Detector pixels
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_pe ™ Geometric principles

Minimize these! 1 erimora BTG

D ) e 2 1

Minimize this!

~ M aXI m IZe th |S| ‘ | L Penumbrs blurring |

Minimizing | is your first choice!

Maximize L: The source is a 41 emitter: flux tapers off as R
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_pe ™ Geometric principles

Minimize these!
Minimize this!

pPenumbra blurring |

1

Penumbra berring

~ Maximize this! |

Minimizing | is your first choice!

Maximize L: The source is a 41 emitter: flux tapers off as R

Data acquisition time extended
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pPenumbra blurring |

1

Penumbra berring

~ Maximize this! |

Minimizing | is your first choice!

Maximize L: The source is a 41 emitter: flux tapers off as R
Data acquisition time extended

Minimize D: Less neutrons will arrive at the sample
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o = Geometric principles

Minimize these!
Minimize this!

penumbra bluring |

1

Penumbra berring

~ Maximize this! |

Minimizing | is your first choice!

Maximize L: The source is a 41 emitter: flux tapers off as R
Data acquisition time extended
Minimize D: Less neutrons will arrive at the sample

Data acquisition time extended
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™ Neutron collimation and exposure time

A compromise has to be found for the optimal L/D-resolution-data taking
time:
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w1 e Neutron collimation and exposure time

A compromise has to be found for the optimal L/D-resolution-data taking
time:

Flux vs. L/D
1.E+06

1.E+05

.:2: 1.E+04 -
c

u

£ 1.E+03 -
1.E+02

1.E+01 \\
1.E+00 [

50 500 5000 50000
L/D

Flux (a
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TOMCAT beamline at PSI
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Flux = /ph-s-cmz
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- - Neutrons vs. X-rays

Why are we so concerned about the flux?

TOMCAT beamline at PSI ANTARES beamline at
TUM

Flux = 1016/

_ 108
ph - s - cm? Flux = /

n-s-cm2
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rays

X

Neutrons vs

sl

Why are we so concerned about the flux?
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(e} < ) -
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(1 Neutrons vs. X-rays

Why are we so concerned about the flux?

TOMCAT beamline at PSI ANTARES beamline at
TUM

Flux = 1016/

_ 108
ph - s - cm? Flux = /

n-s-cm2

That’'s one of the main differences between x-ray and neutron imaging




(1 Neutrons vs. X-rays

Why are we so concerned about the flux?

TOMCAT beamline at PSI ANTARES beamline at
TUM
_10%° _ 108
Flux = /ph-s-cmz Flux = /n-s-cmz
practical

That's one of the meferenceS between x-ray and neutron imaging
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X-rays: Neutrons:
 Interacting with the  Interacting with the
electron shell nucleus
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st Neutrons vs. X-rays

X-rays: Neutrons:
 Interacting with the  Interacting with the
electron shell nucleus

Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| Period | Period

1

1

2 2
3 o ! 3
4 K Ca Sc Ti \" Cr 4
0.14 0.26 || 0.48 || 0.73 || 1.04 1.29
5 Rb Sr Y Zr Nb Mo 5
0.47 || 0.86 1.61 || 2.47 || 3.43 || 4.29
Hf
6 1 2 3 6
fr |[ Ra Rf || Db || sg
7 I_’“M . I_“_Iu !

. Pm | Sm Gd .
A Th Pa

Actinides Actinides
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Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| Period | Period

1

2 2
3 o ! 3
4 K Ca Sc Ti \" Cr 4
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(T Neutrons vs. X-rays

X-rays: Neutrons:
 Interacting with the  Interacting with the
electron shell nucleus

Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Group— 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| Period | Period

1

1

2 2
3 3
4 K Ca Sc Ti \% Cr 2
0.14 || 0.26 || 0.48 || 0.73 || 1.04 || 1.29
5 Rb Sr Y Zr Nb || Mo 5
0.47 || 0.86 || 1.61 || 2.47 || 3.43 || 4.29
Hf
6 6

~

Lanthanides

Actinides

Already this creates a clear domain for neutron imaging!
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(= Neutrons vs. X-rays

X-rays: Neutrons:
 Interacting with the  Interacting with the
electron shell nucleus
Photo X-rays Neutrons

Group— 1 2 3
| Period

Fr Ra
- 11.80

Lanthanides

Actinides

il ﬂ

Alre

cates a cled I neutron
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Neutrons vs. X-rays

X-rays:

Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

Photo X-rays Neutrons

2 Li Be
0.06 || 0.22
MQ
0 13 o 24
o 14 M o 48
Rb
0 47 0 86 1 61
Cs Ba
1.47 2.73
Fr Ra
7

Lanthanides

Actinides

Alre

e e

-
Mn
y oso 072 054 121
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See presentation of C. GrUnzwelg about this
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electron shell nucleus
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X-rays: Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed e Massive / variable speed

See presentation of S. Peetermans about this
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X-rays: Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed  Massive / variable speed

 No magnetic moment * Inherent magnetic moment




w1 Neutrons vs. X-rays

X-rays: Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed e Massive / variable speed

 No magnetic moment * Inherent magnetic moment

See presentation of N. Kardjilov about this
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(23 Neutrons vs. X-rays

X-rays: Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed  Massive / variable speed

 No magnetic moment * Inherent magnetic moment

e Point-like source  Extended source
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(23 Neutrons vs. X-rays
X-rays: Neutrons:
 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed
 No magnetic moment

e Point-like source
 lonizing

 Massive / variable speed

* Inherent magnetic moment
e Extended source

* Non-ionizing (directly)
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(23 Neutrons vs. X-rays

X-rays: Neutrons:

 Interacting with the .
electron shell
 Massless / Fixed speed
 No magnetic moment .
* Point-like source .
 lonizing .

Interacting with the
nucleus

Massive / variable speed
Inherent magnetic moment
Extended source
Non-ionizing (directly)

This has an influence on the way you convert

neutrons into visible light
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(23 Neutrons vs. X-rays

X-rays: Neutrons:

 Interacting with the  Interacting with the
electron shell nucleus

 Massless / Fixed speed  Massive / variable speed

 No magnetic moment * Inherent magnetic moment

e Point-like source e Extended source

* lonizing * Non-ionizing (directly)

This has an influence on the way you convert
neutrons into visible light

(even though you can avoid going through visible
light altogether i.e. MCP based detectors)
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w1 = Neutron conversion to light

I Absorption cross section
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w1 = Neutron conversion to light

I Absorption cross section

B Scattering cross section
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™ Neutron conversion to light

3H (2.73 MeV)

a (2.05 MeV)

940 b
) + —
—
oLi

259 kb
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157Gd
n 157Gd /_'j/

e (29-130 keV)

7Li (94%: 840 keV)

+ (6%: 1.02keV)

¢

o (94%: 1.47 MeV)
( 6%: 1.78 MeV)
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™ Neutron conversion to light

7Li (94%: 840 keV)

) (6%: 1.02keV)

o (94%: 1.47 MeV)
n ( 6%: 1.78 MeV)
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™ Neutron conversion to light

Intensity (weighted %)
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w1 = Neutron conversion to light

Intensity (weighted %)
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™ Neutron conversion to light

Intensity (weighted %)
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How do you choose which absorber?
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because these scintillators are powder)
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w1 = Neutron conversion to light

How do you choose which absorber?

Rule-of-thumb: thickness = spatial resolution (valid

because these scintillators are powder)
50um-LiF+ZnS

20um-Gadox
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w1 e Neutron conversion to light

How do you choose which absorber?

Rule-of-thumb: thickness = spatial resolution (valid
because these scintillators are powder)

50um-LiF+ZnS 20um-Gadox 10um-Gadox
NN R T % ‘ e W\ 7777
N &7 N\

L 1A i /
¥ F, ’
iy, B
K #
p ’ .

That’s not the end of the story (of course)
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™ Neutron conversion to light

3H (2.73 MeV)
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e (29-130 keV)

7Li (94%: 840 keV)

+ (6%: 1.02keV)

¢

o (94%: 1.47 MeV)
( 6%: 1.78 MeV)




PAUL SCHERRER INSTITUT

™ Neutron conversion to light

3H (2.73 MeV)

o (2.05 MeV)

940 b
) + —
—
oLi

;259 kb
> b /./
/- 3,
157G
n 157G /g/

7Li (94%: 840 keV)
(6%: 1.02keV)

e (29-130 keV)

o (94%: 1.47 MeV)
( 6%: 1.78 MeV)
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psls Neutron conversion to light

940 b ° 3H (2.73 MeV)
—
J + — .
p o (2.05 MeV)
n 6Li

he range of these prtcles is different! [’

7Li (94%: 840 keV)
(6%: 1.02keV)

o (94%: 1.47 MeV)
( 6%: 1.78 MeV)
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™ Neutron conversion to light

3H (2.73 MeV)

a (2.05 MeV)

940 b
) + [
—
oLi

i 7259 kb
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n 157Gd /_'j/

e (29-130 keV)

@ 7Li (94%: 840 keV)

+ (6%: 1.02keV)

¢

o (94%: 1.47 MeV)
( 6%: 1.78 MeV)




PAUL SCHERRER INSTITUT

=~

—_—

|

Neutron conversion to light

Absorption

Absorption at 1.8 A

05

0.1

0.05

1
0.5
— 10
= Gadox
w157 Gadox
1574
0.1 e GGG |
—157GGG
e | i
0.05 |
L L
O'011 10 100

Thickness (um)

Absorption at 3 A

— 10p
= Gadox

m— G

e 1573
= GGG

s 6| i

w157 Gadox

_157GGG

7500 0,01 1

10

Thickness (um)

L
100

500




IIIIIIIIIIIIIIIIIIII

™ Neutron conversion to light

Absorption probability
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™ Neutron conversion to light

Absorption probability

You can only
choose two
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Neutron conversion to light

Absorption
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w1 w Thermal and cold neutrons

Absorption
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w1 = Thermal and cold neutrons

Thermal neutrons Cold neutrons
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w1 = Thermal and cold neutrons

Thermal neutrons Cold neutrons

oy

Wavelength
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Thermal and cold neutrons

Cross Section (barn)
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Thermal neutrons Cold neutrons

Wavelength
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Coffee
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o[ Engine running

Dynamic Neutron Radiography

fired 64ccm two-stroke engine @ 8'000rpm
STIHL TS 400

PAUL SCHERRER INSTITUT

-

ISee presentation of P. Boillat about this I
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ol = j» Buddha

See presentation of D. Mannes about this
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R ™ Army-knife

ISee presentation of A. Kaestner about this I
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Thermal neutrons Cold neutrons

Wavelength

‘ Energy

Cross section

< Penetration length

Sensitivity




Thermal neutrons Cold neutrons

Wavelength |

There’s much more to that,
see next talks!

Penetration length

Sensitivity l
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- - Other great stuff with neutrons

4.2

1418

4.0

See presentations of S. Peetermans and M.
Raventos about these




