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1. Absorption-based imaging

2. How to attenuate a neutron beam: absorption vs. 
scattering (in brief)

3. Geometrical principles: L/D 

4. Neutron collimation and exposure time

5. Main differences between x-ray and neutron imaging

6. Neutron imaging domain: big objects, hydrogen…

7. Neutron conversion to light

8. Thermal and cold neutrons: pros and cons

9. A taste of more advanced neutron imaging techniques
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Problem: 

You have an object

You want to know what’s inside this object (even the 
composition)

You also want to know how much of it is inside

And for some reasons you want to use neutrons (we’ll see 
why later)
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What is neutron imaging

Moderate and transport the resulting neutrons

See presentations from E. Lehmann and M. Strobl about this
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What is neutron imaging

Measure!

Source  Collimation  Object  Detector

It’s a little bit more complex than this…
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Attenuation-based imaging

1st: let’s divide the bulk into thin (differential) slices

I0 I=?
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Let’s consider one slab at a time (we’ll sum the 
effect of each of them eventually)

I0 I=I0+dI
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In reality, a slab is made of discrete attenuators 
separated by vacuum

I0

The area of each attenuator is called the 
(microscopic) cross section

I=I0+dI



Attenuation-based imaging

If we have N absorber per unit volume and the slab 
has a thickness of dx

I0

we can express 

I=I0+dI
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Attenuation-based imaging

We can solve the equation and integrate over the 
thickness t:

Beer-Lambert law

For several absorbers
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With “C” the line, of length t, in front of pixel (i,j)
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Attenuation-based imaging

From this to quantification of the amount of material
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Attenuation-based imaging

1. The absorbers are independent on 
each other

2. The absorbers are “diluted” e.g. they 
do not shadow each other from one 
slab to the other

3. The attenuation does not depend on 
the wavelength or the beam is 
monochromatic

4. The beam is somewhat parallel

5. The absorbers are not influenced by 
the radiation (i.e. no fission in the 
material)

6. No scattering is present

For (thermal and cold) neutrons:

True for most applications

True for most elements

The equation needs to be 
modified:

(Almost) true for imaging

True for most elements

Plain wrong for most 
elements
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Normalized scattering cross section

See presentation of R. Harti about this
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How to solve this problem:

1. Accept it: quantification of highly scattering elements through 
imaging is difficult

2. Flat samples are easier DetectorSample

Neutrons

Assume 4 π scatterer (red) �

The pixel-wise solid angle 
quickly becomes small�

The cross talk quickly tapers off

Absorption vs. Scattering
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How to solve this problem:

1. Accept it: quantification of highly scattering elements through 
imaging is difficult

2. Flat samples are easier

3. Measure far away from the detector

4. Use scattering rejection

Detector

SampleNeutrons

MCP

Absorption vs. Scattering
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How to solve this problem:

1. Accept it: quantification of highly scattering elements through 
imaging is difficult

2. Flat samples are easier

3. Measure far away from the detector

4. Use scattering rejection

5. Modelling tools and simulations for ex-post correction

6. Measure it! (Neutron Grating Interferometry)

Seems the easiest! Let’s do that!

Absorption vs. Scattering
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Minimizing l is your first choice!

Maximize L: The source is a 4π emitter: flux tapers off as R-2

Data acquisition time extended

Minimize D: Less neutrons will arrive at the sample

Data acquisition time extended

Geometric principles
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Why are we so concerned about the flux?

TOMCAT beamline at PSI ANTARES beamline at 
TUM

That’s one of the main differences between x-ray and neutron imaging

practical
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Neutrons:
• Interacting with the 

nucleus

Already this creates a clear niche for neutron imaging!

NeutronsX-raysPhoto

Neutrons vs. X-rays

See presentation of C. Grünzweig about this
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X-rays:
• Interacting with the 

electron shell
• Massless / Fixed speed
• No magnetic moment
• Point-like source
• Ionizing

Neutrons:
• Interacting with the 

nucleus
• Massive / variable speed
• Inherent magnetic moment
• Extended source
• Non-ionizing (directly)

This has an influence on the way you convert 
neutrons into visible light

(even though you can avoid going through visible 
light altogether i.e. MCP based detectors)

Neutrons vs. X-rays
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n 157Gd
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259 kb

n 10B

7Li (94%: 840 keV)

( 6%: 1.02keV)
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Ionizing!
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Slide from B. Walfort, WCNR-10, 

Grindelwald (CH) (2014)
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ZnS:Ag or ZnS:Cu

Gd2O2S:Tb
Photosensitivity of CCD

Slide from B. Walfort, WCNR-10, 

Grindelwald (CH) (2014)

Neutron conversion to light

See presentation of P. Trtik about this
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How do you choose which absorber?

Rule-of-thumb: thickness = spatial resolution (valid 
because these scintillators are powder) 

1mm

50um-LiF+ZnS 10um-Gadox20um-Gadox

That’s not the end of the story (of course)
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Absorption probability

Light yieldResolution

You can only
choose two
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Coffee



Engine running

See presentation of P. Boillat about this



Buddha

See presentation of D. Mannes about this



Army-knife

See presentation of A. Kaestner about this
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There’s much more to that, 
see next talks!



Other great stuff with neutrons

λ0

See presentations of S. Peetermans and M. 
Raventos about these


