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Introduction

3D and 4D imaging produce large amounts of data

Gigabytes. . .
. . . or even

terabytes of data

• 3D visualization
• Sample characteriztation
• Process parameterization
• etc
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What do you want to know from the data?

Quantitative
• Material composition
• Material transport

Structure
• Identify items
• Item geometry

This will affect the choice of processing methods.
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Measurements are rarely perfect

Expected image Measured image

Artifacts

Rings

Lines

Blurring

Noise

Uncorrelated

Texture

Imaging system

Factors affecting the analysis

• Resolution
• Small relevant features
• Sample movement

• Noise
• Inhomogeneous contrast
• Artefacts
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A typical processing chain

Radiography

Acquisition

Normalization

Artifact removal Corrections

Preprocessing

Time series

CT

Diffraction

Energy selective

Grating interferometry

Transforms

Classification
Estimation

Shape analysis

Analysis

Process modelling
Visualization

Parameter extraction

Evaluation/Presentation

Denoising
Enhancement

Improve quality

Publication
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Different types of images

2D
• Pictures
• Radiographs
• CT slices

3D
• Volumes

x, y, z

• Movies
x, y, t

4D
• Volume movie

x, y, z, t

x

y

Frame 0

Frame 1

Frame N-1
Frame N

time

.
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The smallest elements of an image

Definition
A pixel is the smallest element of
an image. It has
• intensity and color
• a position in the image
• in 3D it is called voxel
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The histogram

The histogram is a statistical representation of the pixel intensities.
It plots the frequencies of the gray levels in the image

It can be used as
• performance indicator for
experiment setup.

• guide for the visualization.
• base for segmentation
methods.
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Data types
Integers . . .

• Can only represent integers (0, 1, 2, 3, . . . ).
• Either signed or unsigned.
• Raw format from camera

Examples
25
100

= 0
100
4

= 4

Floating point . . .

• Can represent real numbers.
• Should be used for most calculations → type
casting.

• Require more storage space
Examples

25
100

= 0.25
100
4

= 4.0
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Bits and dynamics

Dynamics and sensitivity
• Images are stored in 8- or 16-bit format.
• Great contrast differences require more bits.
• The sensitivity to small changes require more bits.

8 bit - 256 gray levels 2 bit - 4 gray levels

0 100 200
0
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Basic operations

A pixel wise operator performs the same operation on each pixel in
the image

Binary operations c(x) = a(x) op b(x) +f

g

f+g

Unary operations b(x) = op(a(x))

+f

g

f+g

sinf sin(f )

Examples are
• Arithmetic operators (addition, subtraction, multiplication, and
division)

• Any scalar function (sin, cos, log, exp, etc)
Pixel-wise operations are often written without the index x
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Looking into Beer-Lamberts law

The intensity of a neutron radiograph is described by

I = I0e−
∫
L k(x) dx

We measure
Sample

I =

Open beam

I0 =

Dark current

IDC =

Compensation for camera
background

A. Kaestner, Image analysis AUNIRA Imaging school, October 2015 13(66)



Intro Images and Noise Enhancement Segmentation Clean-up What’s next? Summary References

Open beam correction
From Beer-Lamberts law, I = I0e−

∫
L k(x) dx , we get

p =
I − IDC

I0 − IDC
=

−

−

=

p Normalized projection
I Measured radiographic image

IOB Open beam image – the beam + scintillator profile
IDC Dark current image – bias introduced by camera
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Open beam correction – Error propagation

No measurement is error free
• Intensities are random variables (Poisson distribution).
• Artifacts result in intensity variations

p =
(I + εI )− (IDC + εDC )

(I0 + ε0)− (IDC + εDC )
(1)

Improve image quality by acquisition
For a given exposure time and pixel size:

εI Change acquisition parameters
ε0 Acquire many to improve statistics

εDC Acquire many to improve statistics
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Noise

Noise types

Gaussian Salt ’n pepper Textured

Signal to noise ratio

SNR = µ
σ

SNR=∞ SNR=10 SNR=5 SNR=2
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Neutron statistics – What can we expect?

Neutrons per pixel vs SNR
The average number of neutrons N reaching the detector.

SNR ∼
√

N =
√

flux [n cm−2s−1]︸ ︷︷ ︸
constant

× area[cm2]× time[s]︸ ︷︷ ︸
variable

(2)

Pixel size and exposure time
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Noisy profiles
50ms exposure
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The importance of good reference data

p = (I + εI )− (IDC + εDC )︸ ︷︷ ︸
Variable

/
(I0 + ε0)− (IDC + εDC )︸ ︷︷ ︸

Constant
(1 revisited)

Sensitive cases
• Low dose acquisition
Low SNR as it is, why make it worse?

• Computed tomography
ε0 + εDC is repeated for all projections → rings.
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How many open beam image are needed?
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Summary - introduction

• Rule of thumb – at least 5 OBs more are better.
• Many OBs have greatest impact for low dose cases.
• Risk to introduce outliers with many references.

⇓
• Spend more time on good reference data.
• Use outlier removal on reference data as standard procedure.
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Image enhancement
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Noise suppression using a filter

Definition
A filter is a process that alters the image to either suppress or
enhance information using a set of neighborhood pixels.

Mainly two types:
• Linear spatially invariant filters. Computed with convolution
• Non-linear filters

Books that cover filters are e.g. Jähne [2002] or Jain [1989]
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Filter characteristics

Low pass filters

• Slow changes are enhanced
• Rapid changes are suppressed

Example: Noise reduction

LP

Original Low-Pass Filtered

High pass filters

• Rapid changes are enhanced
• Slow changes are suppressed

Example: Feature detection
HP

Original High-Pass Filtered
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Linear filters
Computes filter operation using the convolution operation

g(x) = h ∗ f (x) =
∫

Ω
f (x− τ ) h(τ ) dτ (3)

g(x) = h ∗ f (x) =
∑
p∈Ω

f (x− p) h(p) (4)

where
• f (x) is the image
• h is the convolution kernel of the filter

hf h*f
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Low-pass filters

Low-pass filters have an averaging effect that suppress noise.

Mean or Box filter

All weights have the same value.

Example:

B =
1
25
·

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Gauss filter
G = e−

x2+y2

2σ2

Example:
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Using a Mean filter
No noise SNR=10 SNR=5 SNR=2

No filter

σ=3

σ=5

σ=7
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The median filter

Principle

2
52

23164

53343
6343

4342
4453

4

5
55

3

33.5

3.53343.5

33.5

4334

Sort {5,3,4,4,3,3,4,3,4} {3, 3, 3, 3, 4, 4, 4, 4, 5}

Features
• Low pass type
• Good at removing local outliers
• Gentle to edges
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Comparing filters
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High-pass filters

High-pass filters enhance rapid changes – ideal for edge detection

Typical high-pass filters:

Gradients

∂

∂ x
=

1
2
· −1 1

∂

∂ x
=

1
32
·
−3 0 3
−10 0 10
−3 0 3

Laplacian

4 =
1
2
·
1 2 1
2 −12 2
1 2 1

Sobel

G = |∇f | =

√(
∂

∂ x
f

)2

+

(
∂

∂ y
f

)2
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Filters for edge detection

Laplacian Sobel
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Filter example: Spot cleaning

Problem

• Many neutron images are corrupted by
spots that confuse following processing
steps.

• The amount, size, and intensity varies
with many factors.

Solutions
:-( Low pass filter
:-( Median filter
:-) Detect spots and replace by estimate
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Spot cleaning algorithm

An algorithm

Original Median

Abs(Med-Orig)
Cleaned

Abs

k<

<k

Median
NxN

*

*
Thresholds Detection masks

Outliers

Expected data

Replacement

Keep original

Parameters
N Width of median filter.
k Threshold level for outlier detection.
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Spot cleaning – Compare performance

Original

20 40 60
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Box 5 #5

20 40 60
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Median 5 #5

20 40 60
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Cleaning algorithm
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Difference Box
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Difference Median

20 40 60

20

40

60

Difference Cleaning

20 40 60
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The ImageJ ways
Despeckle Median ... please avoid this one!!!

Remove outliers Similar to cleaning algorithm

A. Kaestner, Image analysis AUNIRA Imaging school, October 2015 34(66)



Intro Images and Noise Enhancement Segmentation Clean-up What’s next? Summary References

Advanced non-linear filters for noise suppression

Motivation
Basic filters have problems to handle
• Low SNR
• Textured noise
• Edges

Something new is required. . .

The solution
Partial differential equation based filters
can take noise suppression one step further.
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PDE based filters

Non-linear diffusion
Smooth fine features first

∂u

∂t
= G (|∇σu|)︸ ︷︷ ︸

Diffusivity

∇2u

Inverse scale space
Add wide features first

∂u

∂t
= div

(
∇u

|∇u|

)
+ λ (u0 − u + v)

∂v

∂t
= α (u0 − u)

∇σ Gradient smoothed by a Gaussian
λ Controls the strength of the filter
α Regularization parameter (quality refinement)
N Number of iterations

τ = ∂t Time increment

A. Kaestner, Image analysis AUNIRA Imaging school, October 2015 36(66)



Intro Images and Noise Enhancement Segmentation Clean-up What’s next? Summary References

Comparing different filters
Original Diffusion filter ISS filter

Kaestner et al. [2008]
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An example with the ISS filter

Neutron CT of a diesel particulate filter

Original 100 iterations 1000 iterations
Filter time for 1.5 Giga voxels 34h. . .

Gruenzweig et al. [2012],Kaestner et al. [2012]
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Segmentation
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What is segmentation?
Segmentation is the process to convert the pixels in an image into a
limited (small) number of classes depending on:
• The histogram of the image
• A-priori knowledge of the statistics in the image
• Neighbourhood information

?

Water

Other land

V egetation
Landsat image
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Manual thresholding

γ=400γ=160

400 200 0 200 400 600 800
0

2000

4000

6000

γ=� 50G ray scale
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Detection performance

0 50 100 150 200 250 300 350 400 450 500
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Multi-class classification
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Problematic cases

Low SNR
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Proper preprocessing can reduce these effects
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Histogram based classification

A classic algorithm to find the threshold of an image Otsu [1979].

Find a threshold that
• Minimizes the in-class variance
• Maximizes the between-class variance

using the histogram of the image.

400 200 0 200 400 600 800
0

2000

4000

6000
Histogram

( b
2

Cost function σ )

Threshold t=167.3
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Threshold with hysteresis

To improve the classification performance with overlapping
histograms

A single threshold would either be
• too low → undesired pixels are assigned
• too large, only desired pixels are assigned.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Histogram

Threshold

H0 

H1 

Error H0

Error H1

Input f f > a f > b Growing b → a
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Further classification methods

Depending on your task, basic thresholding is not sufficient:
• Fuzzy C Means
• Region growing/tracking
• Scale pyramids
• Active contours
• etc...
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Some concluding words

• No sample or sample condition is like the other
→ Classification method must be chosen with care every time

• Clean images are easier to work with
→ Put some extra time in enhancement.

• Interactive classification can improve the performance
• Classification and pattern recognition is an active field of
research
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Clean-up
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The classification is not 100% perfect

Something is needed to clean up misclassified pixels
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Morphological operations
Morphological operators act as search and replace operation.

Some structure elements

Erosion

Region shrinking

Dilation

Region growing

Open

Erosion → Dilation

Close

Dilation → Erosion
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Testing morphological operators with SE =

Input

Erosion Dilation Open Close
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Testing morphological operators with SE =

Input

Erosion Dilation Open Close
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What’s next?
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Finalizing the analysis

The previous steps
• Information enhancement, denoising etc.
• Classification
• Cleaning

are more or less similar.

The next steps
Depend on the purpose of the experiment:
Exploration/Visualization What are the contents of the sample.
Quantification Sample composition and dimensional analysis.
Verification of model describing the observed process.
Fault detection Identify and measure dimensions of faults.
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Data visualization

Basic methods

Iso-surface Volume cutting Volume rendering

Reasons to visualize the data
• Explore the data
• Qualitative data understanding
• Publications
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Some visualization examples

Fault inspection Material composition Anatomy
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Structure analysis – Labelling

Connected components

- Touching grains
→ single item.

+ No preprocessing

Watershed

- Over-segmentation
→ Pre-processing

+ Identifies touching grains

Soille [2002]
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Example with watershed segmentation

Sample Processing

⇒
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Kaestner et al. [2005]
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Estimate water content over time

On-the-fly CT Find regions

Projected abs gradient

⇒

Estimation

θC (t) = E

f (p, t)|M(p) = C ,M ∈

⇒
0 10 20 30 40 50 60 70 8

0

5

1

5

2

5

3

time [min]

Fast structure

Coarse sand
Fine sand

Kaestner et al. [2007]
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Verify the correctness of the method

Data massage

• Operations manipulate the data
→ avoid strong modifications.

• Too much a priori
→ expected but wrong results.

• Interactive processing is
subjective.

Watch that man, he’ll make mugs of us all!

Verify the validity your method
• Visual inspection – does the result make sense
• Difference images – Detect finer changes
• Use degraded phantom images – Thorough statistic evaluation
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Visual verification

Inspect: Error = Original − Processed

Noisy image Ideal filter Over smoothing

Intensity scaling Geometric shift
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Summary
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Summary

Image processing. . .
. . . is a collection of computational methods to analyse images.
. . . often requires a sequence of operations.
. . . can improve the image quality.
. . . should be used with care.
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