

High-Radiation to Materials

HiRadMat facility at the CERN SPS

More information at http://cern.ch/hiradmat

Adrian Fabich IWSMT-12, Bregenz, 20th October 2014

Motivation of HiRadMat

- Dedicated facility for studying the impact of intense pulsed beams on materials Move away from ad-hoc setups for material tests
 - material damage
 - material vaporization
 - Thermal management
 - Radiation damage to materials
 - Thermal shock beam induced pressure waves

- Application areas:
 - materials R&D
 - high-power targetry
 - benchmark tests
 - (survival of) beam line components (windows, coating, vacuum)

EUCARD²

HiRadMat proposed/realized by 2011: R. Assmann, I. Efthymiopoulos

A. Fabich

SPS beam parameters

LHC injection like beam

	Protons	Heavy ions (Pb ⁸²⁺)
Beam energy	440 GeV	173 GeV/u
Bunch intensity	3 10 ⁹ to 1.7 10 ¹¹	3 to 7 10 ⁷ ions
Bunch length	11.24 cm	
Bunches/pulse (max)	288	52
Pulse intensity (max)	5 10 ¹³	4 10 ⁹
Bunch spacing	25, 50, 75 or 150 ns	100 ns
Pulse length (max)	7.2 μs	5.2 μs
Cycle length	18 s	13.2 s
Beam spot	variable around 1 mm ²	
Pulse energy (max)	3.4 MJ	21 kJ

"Single-shot" experiments no long-term irradiation studies

Annual budget limited to ~10¹⁶ proton on target

4

History

- Commissioned in 2011
- Operational since May 2012
 - 9 experiments/tests completed in 2012

Completed experiments in 2012

- 9 experiments in total
- Material studies
 Benchmarking
- Testing of accelerator components

 Collimators, vacuum windows, targets
- Performance of detector technologies

Absorber material tests

Beam tunnelling (HRMT12)

TE/MPE R. Schmidt

EN Engineering Department

20/10/2014, IWSMT-12 (PSI)

6

Collimator materials

• Measured material stresses compared with hydro-code

EN/MME A. Bertarelli

Collimator

Materials

(HRMT14)

W-Powder Target for high power proton beams

TPSG4 - 2012

Detector testing

Radiation-protection detectors in neutron and mixed radiation field

Beam position monitors based on diamond technology

20/10/2014, IWSMT-12 (PSI)

A. Fabich

EUCARD²

EN Engineering Department

Layout Experimental Area

Layout Experimental Area

3 test stands for experiments

- Remote installation of normed support tables
- Standard connections for general infrastructure

EN Engineering Department

Target area

Facility services

Provision of dedicated irradiation infrastructure

- Preparation lab at surface
 - Same interfaces as in the tunnel
- Control room
- Irradiation position
 - Standardized installation (remote)
 - General supplies (water, electricity, cabling)
 - Beam monitoring
- Observation tools
 - Camera, LDV (EN/STI), BLMs (diamond)
- Application/logistics/installation at CERN

A. Fabich

14

Measurement tools

With the expertise of various groups at CERN

- Laser-Doppler vibrometer
 - Measuring surface velocities of several m/s
 - tens of MHz sampling
- Optical high-speed recording
 - High-speed camera with several kHz frame rate

- Diamond detectors, strain gauges, temperature sensors, microphones ...
- Transverse beam monitoring
 - High precision (< 0.1 mm) alignment to experimental tables
 - Based on pCVD diamond detectors

Remote handling

Standardized mobile table

- Testing setup independent of beam line availability
 - dummy target setup in cold area
- Minimising intervention time in RP area

- Equipped with auto-plugs
 - Signals
 - Power
 - Water

21/5/2014

From a proposal to beam time

- Submit application for HiRadMat beam time
 - Application = scientific interest (1-2 pages), pulse list, installation sketch, preliminary safety documents
- Initial discussion with Facility Management
 - feasibility of installation, compatibility with existing infrastructure
- Review by HiRadMat Scientific Board
 - Committee assesses the scientific value and the feasibility of the presented experiment
- From beam slot to scheduled beam time HiRadMat Technical Board
 - safety review: interview with safety officials, analysis of the submitted safety file (includes dismantling!)
 - technical review: interview with beam operations

positive recommendation of all above, validates the beam slot allocation to the schedule

- Beam time
- Dismantling analysis of results feedback on publications to HiRadMat Scientific Board

Outlook

- HiRadMat is a young facility with growing interest due to its uniqueness from various fields in Accelerator R&D and beyond.
- specifically designed to perform experiments with high energy beams impacting on materials.
- First year (2012) of operations: 9 experiments successfully completed
- Beam returns in November 2014

The facility is available to the world-wide community.

