

CCMX Competence Centre for Materials Science and Technology

Wir schaffen Wissen – heute für morgen

Eberhard H. Lehmann

Neutron Imaging & Activation Group, Paul Scherrer Institut, Switzerland

Neutron Sources

(for imaging)

PSI, 8. Oktober 2015

- 1. Introduction
- 2. Properties of the free neutron
- 3. How to get neutrons as free particles and beams
- 4. Fission
- 5. Spallation
- 6. Other (accelerator driven) reactions
- 7. Thermal and cold neutrons \leftarrow moderation
- 8. Typical neutron matter interactions
- 9. Materials of relevance in neutron research
- 10. Mono-energetic neutrons?

Introduction

Have you ever seen a neutron?

PAUL	SCHEI	RRER	INSTITUT		
	<u> </u>	[_	\mathbf{T}		
		\vdash			

Properties of the free neutron

Nucleus

Size: 1.6 * 10⁻¹⁵ m

- **Mass:** 1.674927351(74) * 10⁻²⁷ kg
- Charge: 0
- **Spin:** $\frac{1}{2}$ (two states possible)
- **Velocity:** few m/s (ultra cold) to speed of light (very fast)

Elementary composition: 3 Quarks up-down-down

Magnetic moment: -1.913 μ_N

Interaction with matter: nuclear reactions: absorption, scattering, fission

Classification: Baryon, Fermion

Seite 4

Protor

Neutron

Electron

PAUL SCHERRER INSTITUT	Properties of the free neutron			
Size:	1.6 * 10 ⁻¹⁵ m	\cap		
Mass:	1.674927351(74) * 10 ⁻²⁷ kg	with relevance		
Charge:	0	for neutron imaging		
Spin:	1/2 (two states possible)	Electron		
Velocity:	few m/s (ultra cold) to speed o	of light (very fast)		
Elementary composition: 3 Quarks up-down-down				
Magnetic moment: -1.913 μ_N				
Interaction with matter: nuclear reactions: absorption, scattering, fission				
Classification: Baryon, Fermion				

thermal neutr	rons	X-rays (e.g. 1	100 keV)
•wavelength: ~ 2 Å = 0.2	nm	•wavelength: 1 keV ~	1.24 nm
•energy: 25 meV		energy: eV to MeV	(E=h*c/λ)
•mass: 1.674927351(74)	• 10 ^{–27} kg	•mass: no	
•charge: no		•charge: no	
•spin: ½		•spin: 1	
•magnetic moment: - 1.9	1 μ _N	 magnetic moment: no 	C
 interaction with nuclei vi and absorption 	a scattering	 interaction via electro atomic shell (Photo-, 0 Effekt) 	ons in the Compton-

thermal neutrons

X-rays (100 keV)

complementarity

- A NUCLEAR reaction is needed to break the binding forces in suitable atoms
- It is on the order of MeV/particle

- The options are:
- radioactive decay (Cf-252); Am-Be
- Fission (research reactor)
- *bombardement with accelerated particles (spallation source)*

- A NUCLEAR reaction is needed to break the binding forces in suitable atoms
- It is on the order of MeV/particle

- The options are: (with relevance for neutron imaging)
- radioactive decay (Cf-252); Am-Be
- Fission (research reactor)
- bombardement with accelerated particles (spallation source)

- 1. Fissionable material required: U-235 (in nature available), Pu-239, U-233, Pu-241
- 2. More neutrons out than in: chain reaction possible multiplication
- 3. High energy release: nuclear energy
- 4. Fission products: unsymmetrical mass distribution

- 1. Fissionable material required: U-235 (in nature available), Pu-239, U-233, Pu-241
- 2. More neutrons out than in: chain reaction possible
- 3. High energy release: nuclear energy drawback for a neutron source
- 4. Fission products: unsymmetrical mass distribution

	Research Reactor	Nuclear Power Plant
aim	neutron output	energy production
design	compact core	large core
enrichment	as high as possible	only few %
inventary	few kg only	many tons
power limit	100 MW	3000 MW
temperature	low: 40 °C	high: above boiling
pressure	low	high: 70 bar

Data Base of IAEA: world-wide overview (2015)

https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx

Operational: 248 of 285 total

Power > 1 MW: 117

Age < 40 years: 103 Age > 40 years: 160

Planned/Construction: 18

Neutron Radiography: 74

(ISNR/IAEA-Data Base: 47), but only 15 are «state-of-the-art»

Neutron Scattering: 54

Research Reactors – Design (example FRM-2)

Research Reactors – Design (example FRM-2)

ANTARES and NECTAR @ FRM-2

Neutron Guide Hall East

Spallation: Destruction of heavy nuclei by high energy particle (protons) exposure

Neutron emission: since the lower mass spallation products needs less neutrons for stability, 10-15 neutrons are «available»

Neutron yield: ►high target mass (Pb, W, U, Pb-Bi alloy, ...)
►compact structure (problem: heat removal)
►high proton energy (GeV order)
►high beam intensity (mA, corresp. MW power)

Neutron energy: initially in MeV region → moderation needed to get thermal and cold neutrons

From Fraser et al., measurements at Brookhaven Cosmotron

Overview HIPA

PAUL SCHERRER INSTITUT

Spallation neutron source SINQ @ PSI

- •In operation since 1997
- •Driven by 590 MeV protons on a Pb target
- Intensity about 1.2 mA, corresponding to 1MW thermal power
- •Installations for research with thermal and cold neutrons

Still the world's strongest stationary spallation source

Beamlines layout

Spallation facilities (<u>with homepage</u>)

Spallation facilities (under construction) – other: operational

Spallation facilities (pulsed)

Spallation facilities (imaging options exist)

Spallation facilities (imaging options exist, planned)

PSI HIPA in the international context

"Brilliance" of synchrotron and neutron sources

Limitations in Neutron Imaging: Intensity! (influencing: collimation, coherence, acquisition time, resolution...)

PAUL SCHERRER INSTITUT

Spallation neutrons at SINQ

Further Information: www.pnii.ck/sing/instrumentation

From Fraser et al., measurements at Brookhaven Cosmotron

$p(13 \text{ MeV}) + \text{Be-9} \rightarrow n + \text{B-9}$ LENS (Indiana University)

$$D + T \rightarrow n + {}^{4}\text{He} \quad \text{E}_{n} = 14.1 \text{ MeV}$$

 $D + D \rightarrow n + {}^{3}\text{He} \quad \text{E}_{n} = 2.5 \text{ MeV}$

source strength on the order of 10^{10} n/s into 4π but high losses during the moderation process and the beam formation

- Moderation:slowing down processof initially fast (fission/spallation) neutrons (MeV)to the thermal equilibrium (with the moderator) (meV)
 - \rightarrow over 9 orders of magnitude
 - \rightarrow by elastic collisions with moderator nuclei (H, D, C)

Moderation:best moderation power: H - since the mass is sameas of the neutron; drawback: neutron absorption

D is the best compromise between moderation and absorption; drawback: D costs, scattering range

	<u>Hydrogen</u>	<u>Deuterium</u>	Beryllium	<u>Carbon</u>	<u>Oxygen</u>	<u>Uranium</u>
Mass of kernels <u>u</u>	1	2	9	12	16	238
Energy decrement	1	0.7261	0.2078	0.1589	0.1209	0.0084
Number of Collisions	18	25	86	114	150	2172

Nuclear Power Plant Moderators

Moderator	Reactors	Design	Country
none (<u>fast</u>)	1	<u>BN-600</u>	Russia (1)
graphite	29	<u>AGR, Magnox, RBMK</u>	United Kingdom (18), Russia (11)
heavy water	29	<u>CANDU</u>	Canada (17), South Korea (4), Romania (2), China (2), India (2), Argentina, Pakistan
light water	359	<u>PWR, BWR</u>	27 countries

PAUL SCHERRER INSTITUT

Final spectral distribution

Neutron absorption: important for detection, shielding and collimation; **activation**: emission of secondary radiation (mostly gamma) – *nuclide card*

Neutron scattering: happens at all energies, own research topic with cold and thermal neutrons

Nuclear fission: only with fissile materials possible

«exotic» reactions: mostly in the high-energy range, (n,α), (n,xn); (n,pn), ...

- for detection : He-3, B-10, Li-6, Gd-157
- for shielding: Cd, B+plastics, Gd, H2O (in concrete)
- for sample holders, windows: Al, Zr, Si
- As samples: e.g. organics within metal cases

- 1. Better quantification: no average over large spectral range (talk: P. Vontobel)
- 2. Resolving the behaviour near Bragg edges of structural materials (talk: S. Peetermans)
- 3. Grating interferometry (talk: B.Betz)

- 4. Imaging with polarized neutrons (talk: N. Kardjilov)
- 5. Diffractive imaging (of polycrystalline materials) (talk: M. Raventos)

- Quasi-parallel (high L/D-ratio)
- Beam size adequate to sample dimensions
- High intensity
- Narrow energy band (thermal or cold)
- No background from gamma rays or fast neutrons
- Flat beam profile
- No interference from back-scattered neutrons (and gammas)

\rightarrow All optimization steps result in limited intensities

Light excitation (scintillator)

Photo-stimulated Luminiscence (IP)

Have you ever seen a neutron? How to see a neutron ?

Charge excitation (counter)?

Film blackening

- Even if some neutron imaging is possible with relatively weak sources (1E4 cm-2 s-1), for advanced neutron imaging we need access to highest beam intensities possible
- This is important for either spatial, time or energy resolution ...and for best possible image quality.
- Time-of-flight (TOF) with pulsed sources is a new approach we still have to exploit for practical applications in the right manner
- Fission sources are dominant for neutron imaging facilities, but new approaches for accelerator based systems have to be supported ... and considered as options ... until «mobile» sources
- All exiting reactor based facilities should be upgraded with «reasonable effort» for imaging purposes. Experts Meeting foreseen in March 2016.