

IWSMT-12,October 21, 2014

Microstructural changes in ferritic-martensitic steels under mixed proton-neutron irradiation

V. KUKSENKO^{1*}, C. PAREIGE², P. PAREIGE², Y. DAI¹

¹ LNM, Paul Scherrer Institute, , 5232 Villigen PSI, Switzerland ² GPM, Université et INSA de Rouen, France

* now: Materials Department, University of Oxford, UK

- 1. Materials and backgrounds.
- 2. Proton irradiation experiments (intragranular microstructure):
 - solid spallation products;
 - spatial distribution of chemical species;
 - comparison with TEM data.
- 3. Conclusions and perspectives

materials

chemical composition, at %															
Materials	Cr	Si	Mn	V	С	W	Та	Ni	Мо	Nb	Р	Ν	S	В	Fe
F82H	8.25	0.22	0.16	0.17	0.4	0.61	0.006	-	-			-	balance		
MANET II	10.92	0.35	0.85	0.21	0.51	-	-	0.61	0.33	0.08	0.009	0.12	0.007	0.15	balance

irradiation conditions, SINQ, STIP-II, $E_{protons} \approx 500 MeV$

		F82H	Λ	MANET II			
Т, °С	192	345	196	357			
Irradiation dose, dpa	11.8	20.3	12.4	20.4			

characterisation of materials response to irradiation:

tensile tests	changes of mechanical properties
TEM	defect clusters and He bubbles
APT	chemical elements distribution

response to irradiation

^{*}G. Bonny et al. Scripta Materialia 59 (2008) 1193-1196. * * W. Xiong et al. Solid State and Materials Sciences Volume 35 (2010) 125 - 152.

proton irradiation: spallation products

Solid spallation products content, APT result

	F8	32H	MANET II				
Dose	11.0 dpa	20.3 dpa	12.9 dpa	20.4 dpa			
Ti, appm	■ 570±30	800±10	570±30	760±10			
Sc, appm	⇒ 50±30	90±20	50±30	90±10			
Ca, appm	■ 240±40	370±10	200±40	400±10			

proton irradiation: spatial distribution of elements

F82H, as-received

C, at%

8 Ni Ti Sc 6 Sc Mn Ca Ni Ca Ti 4 Mn Sc Mn Mn Ca Si 2 Si Si Si 0 F82H - 11.8 MANET II - 20.4 MANET II - 12.4 F82H - 20.3 dpa, 345°C dpa, 192°C dpa, 357°C dpa, 196°C

Si-enriched clusters:

• in all samples (F82H and MANET-II);

homogeneously distributed in the matrix;

•size D ~ 2.5 to 4 nm and number density ~ $3...11 \times 10^{23} \text{ m}^{-3}$;

• contain Si, Mn, Ni (only in MANET-II) and spallation Ca (the highest enrichment factor up to ~ 70), Ti and Sc;

• no thermodynamic driving force for precipitation;

• often reported in irradiated FM-steels, Fe-Cr model alloys and bainitic steels, never without irradiation;

Radiation induced

• can be related to radiation induced Siand Ni-rich phases such as G-, χ - or σ -phase?

<u>But:</u> no data about such phases in the studied steels

proton irradiation

C-enriched clusters:

•on the loops or in its neighborhood;

Radiation induced

- contain spallation elements (mainly Ti);
- (Cr, W, V, Ti and Fe) to C ratio \approx 17 to 1, M_{18} C carbide Chi (χ) -phase?
- But: no data about such phases in F82H

proton irradiation: APT vs TEM

	F82	2H	MAI	NET II					
dpa	11.8		12.4	20.4					
<i>Т,</i> °С	192	345	196	357					
Si enriched cluster (radiation induced)									
Number density, m ⁻³	4.0×10 ²³	1.6×10 ²³	7.4×10 ²³	5.5×10 ²³					
Diameter, nm	5.0 ± 0.6	3.8 ± 0.4	2.52 ± 0.6	4.05 ± 0.5					
Other clusters									
Туре	_	C-cluster (radiation induced)	α' clusters (radiation enhanced)	α' clusters (radiation enhanced)					
Number density, m ⁻³		8 ×10 ²²	5.4×10 ²²	1.44×10 ²³					
Diameter, nm		5.0 ± 0.6	1.9 ± 0.5	2.8 ± 0.6					
TEM for similar irradiation conditions	Jia and Dai, JNM, 2006 (10dpa@185°C)	Jia and Dai, JNM, 2006		Shen, Li and Dai, to be published					
SIA clusters density (m ⁻³)	$4.0 imes 10^{22}$	2.9×10^{22}		2.5×10 ²²					
SIA clusters size (nm)	4.2	8.5		5					
Bubbles density (m^{-3})	3.8×10^{23}	$2.5 imes 10^{23}$		3.6×10 ²³					
Bubbles size (nm)	1	5		2					

APT: Ti, Sc, Ca are the main solid spallation products

- *Ti, Sc and, especially, Ca participates in forming of Si-enriched clusters;*
- Ti participates in forming of C-enriched clusters;
- Ti segregates on dislocation loops;
- Ti alters the microchemistry of carbides

Solid snallation products content in the matrix

 Ca and Sc can affect the SIA and dislocation mobility due to a large misfit with matrix Fe atoms (~ 28.5% for Ca and ~ 14% for Sc).

	nion prouu		In the mati		
	F8	2H	MAN		
Dose	11.8 dpa	20.3 dpa	12.4 dpa	20.4 dpa	_
Ti, appm	~ 470	~ 440	~ 580	~ 590	
Sc, appm	~ 40	~ 40	~ 80	~ 40	C>2at%
Ca, appm	~ 150	~ 190	~ 170	~ 170	C _{Ti} >5at%

F82H, 20dpa, 350°C

What can contribute to the irradiation induced hardening and loss of ductility?

Radiation induced clusters:

- homogeneously distributed Si-enriched clusters;
- C-enriched clusters on the dislocation loops (in F82H).

Radiation enhanced precipitation:

Cr-enriched α' clusters in supersaturated MANET II.

Segregations of Cr, C, V, W and spallation Ti atoms on dislocation loops in F82H;

<u>Creation and redistribution of solid spallation products</u>

Thank you for your attention!

Back-up slides

preparation of APT samples

Activity for a half of a tensile sample: 5.18.10⁶ Bq

technique of experiments – APT

electric field is induced at the apex of a tip mass to charge ratio of the ions allows to determine their chemical nature

$$E = \frac{V}{\beta R} \approx 10...30 \frac{V}{nm}$$

 $\frac{m}{n} = 2 \cdot e(V_O + V_P) \left(\frac{t}{L}\right)^2$

conditions:

cryogenic temperatures T=40...45K Ultra high vacuum ~ 10⁻¹⁰bar

materials: as-received state

Si clusters	Si	С	usters
-------------	----	---	--------

	F82H	F82H	F82H	MANET II	MANET II
			- 20.3 dpa, 345°C + 600°C		
	- 20.3 dpa, 345°C	- 11.8 dpa, 192°C	1h	- 20.4 dpa, 357 [°] C	- 12.4 dpa, 196 [°] C
dpa	20.3	11.8	20.3	20.4	12.4
т	345	192	345	357	196

ND m-3	2.70E+23	no dislo		4.03E+23			6.47E+23			5.15E+23			1.12E+24		
	1.60E+23	+dislo													
Diameter,															
nm	3.8	±	0.4	3.7	±	0.8	1.82	±	0.47	4.05	±	1.42	2.52	±	0.58

-

	SINQ F82H, 20 dpa	SINQ MANET-2, 20.4 dpa	BR-2 Fe-12Cr, 0.6 dpa
Cr	8.14±0.26	8.45±0.22	12.5±3.0
Si	3.08±0.16	4.36±0.16	5.2±2.0
Ni	0.69±0.08	3.41±0.14	1.6±1.1
Р	-	-	1.2±1.0
Ca+Sc+Ti	~2.92	~ 0.39	-
Fe	Balance	Balance	Balance

