12th International Workshop on Spallation Materials Technology

19-23 October 2014 Bregenz, Austria Europe/Zurich timezone

<u>Texture evolution and basic thermal-mechanical properties of</u> <u>pure tungsten under various rolling reductions</u>

Xiaoxin Zhang, Qingzhi Yan *, Shaoting Lang, Min Xia, Changchun Ge

Institute of Nuclear Materials

University of Science & Technology Beijing

Beijing, China

Outline

Introduction

- Irradiation damage dependence of grain orientation
- Experimental
- Results
 - Microstructure
 - Basic thermal-mechanical properties
 - Rolling texture
- Summary

Spallation target

Advantages

- High neutron yield
- High strength
- High thermal conductivity
- Moderate activation

Disadvantages

 high-corrosion rate in water under radiation at high temperature

Cristian Bungau et al, Proceedings of IPAC2014, Dresden, Germany

Application in Fusion reactor

Deuterium, Tritium, Helium, Neutron, Electron bombardment

Irradiation damage dependence of grain orientation

Deuterium, Helium and Heavy ions

Irradiation damage dependence of grain orientation Deuterium irradiation:

F sample: Full recrystallized pure tungsten W M Shu et al, T128(2007) 96–99, PHYSICA SCRIPTA

Irradiation damage dependence of grain orientation Helium irradiation:

W. Liu et al, 437 (2013) 297–302, Journal of Nuclear Materials

Irradiation damage dependence of grain orientation Heavy ions:

Guang Ran, Lumin Wang et al, 289 (2012) 39–42 Nuclear Instruments and Methods in Physics Research B

Outline

■ Introduction

- Irradiation damage dependence of grain orientation
- Experimental
- Results
 - Microstructure
 - Basic thermal-mechanical properties
 - Rolling texture
- Summary

Fabrication process

Outline

■ Introduction

- Irradiation damage dependence of grain orientation
- Experimental
- Results
 - Microstructure
 - Basic thermal-mechanical properties
 - Rolling texture
- Summary

 \bullet Homogeneous microstructure with grain size of about 20 μm

Misorientation angle: maximum and cutoff

• Low misorientation angle: noise effect

Too small to be neglected

Constant Angle: φ2

> φ1

max = 2.740 2.317

1.958 1.655

1.399 1.183 1.000 0.845

Sintered tungsten: random orientation

- Texture transformation occurred during rolling process
- 80%,90% rolled tungsten: fiber structure

Euler angles and Miller indices for important texture components in the BCC materials.

Texture components	Euler angles			Fiber
	φ_1	Φ	φ_2	
{001}(100)	0	0	0	η/Θ
{001}(110)	45	0	0	θ
{011}(100)	0	45	0	η/ζ
{011}(011)	90	45	0	ζ
{011}(211)	35	45	0	ζ
{011}(111)	55	45	0	ζ
{111}(112)	30	55	45	γ
{111}(110)	0	55	45	α/γ
{112}(110)	0	35	45	α

• γ -fiber texture and θ -fiber texture formed on the rolled tungsten

Basic thermal-mechanical properties

- Microhardness, bending strength, and relative density increased with rolling reduction
- 60% rolled tungsten exhibited the highest thermal conductivity

Pores and cracks

Basic thermal-mechanical properties

Basic thermal-mechanical properties-Chary performance

Basic thermal-mechanical properties-Recrystallization

• Microhardness decreased:

significantly after annealing at 1773 K for 2 h

slightly after annealing at 2073 K for 2 h

- 60%, 90% rolled tungsten: coarse grains after 2073 K annealing
- Full recrystallization: 2073 K/2 h annealing

Basic thermal-mechanical properties-Thermal shock

Electron beam: 0.22 GW/m². Pulse duration: 5 ms

Rolling texture

Rolling texture

- 40%, 60%, 90% rolled tungsten displayed more γ fiber texture
- 80% rolled tungsten exhibited more Goss texture and θ fiber texture
- 80% rolled tungsten may exhibit the best irradiation resistance

Rolling texture

- Factors: deformation degree, rolling friction, deformation temperature
- For 40%, 60%, 80% rolled tungsten, small deformation degree, high deformation temperature

dynamic recovery and dynamic recrystallization may restrict the development of γ fiber texture and promote the formation of θ fiber texture

- For 90% rolled tungsten, large deformation degree, low deformation temperature "Cold rolling" with large deformation degree may facilitate the formation of γ fiber texture
 Friction may also influence the texture evolution of the 90% rolled tungsten: 3
 - mm thickness

Outline

■ Introduction

- Irradiation damage dependence of grain orientation
- Experimental
- Results
 - Microstructure
 - Basic thermal-mechanical properties
 - Rolling texture
- **Summary**

> 60% rolled tungsten showed the highest thermal conductivity and the best Charpy impact performance

Recrystallized tungsten or rolled tungsten with larger reduction may exhibit better thermal shock resistance

> 40%, 60%, 90% rolled tungsten displayed more γ fiber texture while 80% rolled

tungsten exhibited more Goss texture and θ fiber texture

> 80% rolled tungsten may exhibit the best irradiation resistance

Thanks for your attention!