

12th International Workshop on Spallation Materials Technology

19-23 October 2014, Bregenz, Austria

Development of Triple Beam Irradiation Facilities at CIAE

Shengyun Zhu

China Institute of Atomic Energy

Background

Accelerator irradiation simulation

> Triple beam irradiation facilities at CIAE

Evolution of nuclear energy systems

Evolution of nuclear energy systems from 1st to 4th Generation

Materials : one of bottle neck issues for the development of 4th Generation nuclear energy systems

Among the materials properties Radiation property: one of the most crucial issues to the materials needs to be examined well in advance

Present work motivated to establish in laboratory fast testing facilities of the materials radiation effects for pre-selection

Advanced nuclear energy facilities operate with fission neutrons with a mean energy of <3MeV fusion neutrons of 14MeV spallation neutrons of several hundred MeV

Atomic displacements

Neutron induced cascade collisions

Neuron irradiation causes atoms to be displaced from their lattice sites and produces severe displacement damage since very high fluence of neutrons

Very high irradiation dose

Materials of 4th Generation nuclear energy facilities

suffer very high dose neutron irradiations at high temperatures

	Fission (Gen I)	Fission (Gen IV)	Fusion (DEMO/PROTO)	Spallation (ADS)
Structural alloy T_{max}	<300 °C	300–1000 °C	550–1000 °C	140–600 °C
Max dose for core internal structures	~1 dpa	~30–200 dpa	~150 dpa	50–100 dpa

Structural materials required to work in high displacement damage environment without failure

Transmutation resulting from (n, p), (n, \alpha) reactions A nucleus may absorb a neutron forming a compound nucleus which then de-energizes by emitting a charged particle either a proton or an alpha particle

RD in structural materials of 4th Generation nuclear energy facilities arises from a combination of atomic displacements and helium and hydrogen irradiations

	Fission (Gen I)	Fission (Gen IV)	Fusion (DEMO/PROTO)	Spallation (ADS)
Structural alloy T _{max}	<300 °C	300–1000 °C	550–1000 °C	140-600 °C
Max dose for core internal structures	~1 dpa	~30-200 dpa	~150 dpa	50-100 dp <u>a</u>
Max helium concentration	0.1 appm	~3–40 appm	~1500 appm (~10,000 appm for SiC)	~5000 appm/fpy
Max hydrogen concentration		~20-240 appm	~6750 appm	50,000–100,00 appm/fpy
Neutron Energy E _{max}	<1-2 MeV	<1-3 MeV	<14 MeV	Several hundre MeV

In simultaneous irradiations of atomic displacements and hydrogen and helium there is a so called synergistic effect which can enhance or suppress RD

Synergistic effects can be seen clearly in the Fe-Cr steel and SiC irradiated simultaneously by HI, H and He

>Accelerator irradiation simulation

• Heavy ion irradiation simulation

• Triple beam Irradiation

	Fission (Gen IV)	Fusion (DEMO/PROTO)	Spallation (ADS)
Structural alloy T _{max}	300–1000 °C	550–1000 °C	140-600 °C
Max dose for core internal structures	-30-200 dpa	~150 dpa	50-100 dpa
Max helium concentration	~3–40 appm	~1500 appm (~10,000 appm for SiC)	~5000 appm/fpy
Max hydrogen concentration	~20-240 appm	~6750 appm	50,000–100,000 appm/fpy
Neutron Energy E _{max}	<1-3 MeV	<14 MeV	Several hundred MeV

Radiation effects in materials are characterized mainly by

- High displacement rates at high temperatures
- Simultaneous irradiation of displacement & H & He

Triple beam irradiations of HI, H and He are needed to simulate high dose neutron irradiation i.e. introducing appropriate gas concentrations simultaneously with the damaging heavy ions

Heavy Ion Irradiation Simulation

Some currently available	Facility	Country	Fast Flux E ₁ >0.1 MeV (10 ¹³ /m ² s)	Displacement damage in steel (dpa/yr)	Useful vol (cm³)	Temp Range (°C)	Comments
reactor facilities used for materials	BR2 Core Reflector	Germany	1.5–3.0 0.05–1.0	<3/yr <1/yr	90 250	50–1000 50–1000	• ~105 days/yr • Caps φ: 50–200 mm • In-situ fatigue rigs
testing	OSIRIS	France	2.5	fcw/yr	230	50-1000	
mixed-	HFR Core (C5)	Nether- lands	2.5	<7/yr	1540	80-1100	• 275 days/yr • In situ experiments
spectrum reactors	ATR A and H, B, I-positions Flux traps	U.S.	2 3 0.8 0.03 2.2	6—10/ут 6—8/уг	2:40 1390 5560 5560	50->1500	 Caps ¢: ≤127 mm Large irrad. volume Versatile facility
fast reactors	HFIR Tgt Pos 37 RB pos 8	U.S.	11 5.3	18/yr 5-7/yr	100 720	300-1500	 Very high peak flux Accelerated testing in smaller volumes
East reactor	JOYO	Japan	5.7	~30/yr		300–700	• Temp. control +4 K • 300 days/yı
can reach 20- 30 dpa per	BN600	Russia	6.5	20-52	350	375-750+	 Very-high dose rate Only passive instrumentation
year	BOR-60	Russia	3.0	~20	358	300–700+	 Only passive instrumentation High level PIE

ESS 1.4dpa/GW, d

displacement rate not high enough The heavy ion irradiation has been developed

Heavy Ion Irradiation Simulation (HIIS)

Dose Rate	Heavy Ions (Accelerator)	Fast Reactor	Reactor	ITER
dpa/s	10⁻³ -10 ⁻¹	10-6	10-7	10-6

Damage rate generated by HI irradiation is much higher than that by neutron irradiations, say in the order of 10³⁻⁵ HI irradiation simulation allows critical scientific studies to be performed on reasonable time scales , e.g. hours to days

Heavy Ion Simulation
at CIAE HI-13 Tandem Accelerator

HI	Energy/ <u>MeV</u>	Range/µm	RD rate(<u>dpa/µAh</u>)
¹² C	70	41	2.1
¹⁹ F	80	21	3.9
³⁶ Cl	70	7.7	11.7
¹²⁹ I	100	6.6	26.5
for stainless steel		Providir	ng HIs up to Au

Samples irradiated by HI are not radioactive unlike reactor irradiated samples that are highly activated requiring a very long cooling time before examination

Irradiation parameters such as irradiation temperature, dose, dose rate can be well controlled in HI irradiation

Heavy ion irradiation technique employed in many laboratories with heavy ion accelerators in the world to simulate and investigate RD produced by high dose neutrons

displacement damage plus H and He

Triple-beam irradiations play a important role in investigating the RD of nuclear energy structural materials

Triple beam irradiation facilities usually composed of three accelerators or implanters, delivering heavy ion beam and hydrogen and helium ion beams independently

A list of the various multi-ion-beam facilities in the world

Laboratory	Facilities	Application field	
a) dual or triple MeV ion beams			
MSD, IGCAR, Kalpakkam, India	1.7 MV Tandetron Ion implanter (30–150 keV)	Irradiation behavior of nuclear alloys	
HIT, Tokyo, Japan	3.75 MV Van de Graaff 1 MV Tandetron	Irradiation behavior of nuclear alloys and ceramics	ual
DNE, Nagoya University, Japan	2 MV Van de Graaff 200 kV ion implanter	Irradiation behavior of nuclear alloys and ceramics	
FZ, Rossendorf, Germany	3 MV Tandetron 500 kV ion implanter	Synthesis of nanostructured ceramics assisted by irradiation Ion beam modification of materials	
FSU, Iena, Germany	3 MV Tandetron JULIA 400 kV ion implanter ROMEO	Synthesis of nanostructured ceramics assisted by irradiation Irradiation behavior of nuclear alloys	
LANL, USA	3 MV Tandem 200 kV ion implanter	Heavy ion irradiation from the tandem Simultaneous He/H implantation from the impl	lanter
IAE, Kyoto, Japan	1.7 MV Tandetron 1 MV Van de Graaff 1 MV Singletron	Evolution of microstructure under multi-irradiation	
JAEA, Takasaki, Japan TIARA	3 MV Tandem 3 MV Van de Graaff 400 kV ion implanter	Synthesis of nanostructured ceramics assisted by irradiation Behavior of alloys and ceramics under irradiation	iple
DMN, Saclay, France JANNuS (ready to operate at the beginning of 2009)	3 MV Pelletron ÉPIMÉTHÉE 2.5 MV Van de Graaff YVETTE 2.25 MV Tandetron	Irradiation behavior of nuclear materials Ion beam modification of materials	
Kharkov Institute of Physics and Technology, Kharkov, Ukraine	2 MV ESU 50 kV proton 50 kV helium	Irradiation behavior of nuclear alloys	
Accelerator Lab. National Tsing Hua Univ. Taipei	HVEE 500KV ion implanter 9SDH2 Tandem Van de Graaffaccelerator	Irradiation behavior of nuclear materials	

b) mono or dual ion beams (>100 keV) cou	pled to a TEM	
CARET, Sapporo, Japan	1.3 MV HVTEM 400 kV ion implanter 300 kV ion implanter irradiation	Synthesis of nanostructured materials assisted by irradiation Behavior of nuclear materials under
Argonne National Laboratory, USA	2 MV Tandem or 650 kV ion implanter 300 kV TEM	Irradiation behavior of nuclear ceramics
CSNSM, Orsay, France (will operate at the beginning of 2008)	2 MV Tandem Van de Graaff ARAMIS 150 kV ion implanter IRMA 200 kV TEM	Irradiation behavior of nuclear ceramics and semiconductors Ion beam modification of materials
c) dual keV ion beams coupled to a TEM	1	
IMR, University of Salford, UK (under construction)	200 kV TEM Ion implanter (5–100 keV, A ≤ 140)	Radiation damage on nuclear reactor materials and semiconductors
JAERI DMD, Takasaki, Japan	400 kV TEM 400 kV ion implanter 40 kV ion gun	Radiation effects
JAERI DMSE, Tokai-Mura, Japan	2°—40 kV ion guns 400 kV TEM	Irradiation behavior of nuclear alloys and ceramics

JANNuS

at IAE Kyoto

Kharkov Inst. Ukrain

National Tsing Hua Unversity, TW

LLNL, USA

Maximal intensities 3.9×10¹⁴/s for protons, 8.8 × 10¹⁴/s for 4He+, 2.2 × 10¹⁴/s for⁴He²⁺ 1.8 × 10¹²/s for 132Xe10⁺, 3 × 10¹¹/s & 8.2 × 10¹²/s for ⁴⁰Ar⁸⁺ 2.6 × 10¹² pps for ⁵⁶Fe⁸⁺, 1.1 × 10¹² pps for

The triple beam irradiation of heavy ions & hydrogen & helium produced by accelerators or implanters a unique way in a reasonable time period to experimentally investigate the radiation damage above several tens of dpa with appropriate H and He concentrations

> Triple beam irradiation facilities at CIAE

• Heavy ion irradiation facilities

•Triple beam facilities

Mass Number (amu)

Heavy ion irradiation facilities at the HI-13 tandem accelerator

without breaking vacuum

samples directly cooled by flowing water Single sample irradiation

Development and Establishment of triple beam facilities at CIAE divided into three phases

Phase 1

Composed of HI-13 tandem Accelerator and a 250 kV implanter

HI-13 tandem

providing various kinds of HI up to AU ions, 250 kV implanter delivering mixed beam of H & He

Irradiation chamber

Phase 2

Present stage

Phase 3

Depth distributions of displacement for 100 keV H, 200 keV He, 1.3 MeV Fe & 5 MeV Au in stainless steel Depth distributions of displacement for 100 keV H, 200 keV He, 2 MeV and 3 MeV Fe in stainless steel

Depth distributions of heavy ion, H and He are well overlapped

High energy triple beam facilities

Triple beam irradiations have been carried out with the established facilities to study the radiation effects in CLAM, ODS, 304 ss, etc

The radiation effect of simultaneous triple ion beam irradiation in CLAM

Presented by Dr. Yuan

Thank you very much

Preliminary verification

Previous experiment proved the equivalence of the HI irradiation and the neutron irradiation for α -Al₂O₃ at the same irradiation dose

85 MeV ¹⁹F ions to a fluence of 5.28×10^{15} cm⁻² @ 60 °C, equivalent to the En ≥ 1 MeV neutron fluence of $3x10^{20}$ cm⁻² @ 75 °C irradiated at JJR-2 reactor, Japan

Modern Physics Letters B18(2004)881