Effect of gas microbubbles on pressure wave mitigation in the JSNS mercury target

J-PARC Center, JAEA

Takashi Naoe, Hiroyuki Kogawa, Takashi Wakui, Katsuhiro Haga, Makoto Teshigawara, Shin-Ichiro Meigo, Hidetaka Kinoshita, Masatoshi Futakawa, Hiroshi Takada

Operation histories of JSNS targets

- * No-leakage detected after 2050 MWh operation at 300 kW
- * 3rd target is replacing to double flow target in 2014 maintenance period

Suppression of pressure waves by injecting gas microbubbles

 Requires 50 µm in radius and 10⁻⁴ in void fraction for mitigating pressure waves J-PARC

JSNS bubbling system

#3 target vessel with bubble generator

- * Developed multiple swirl type microbubble generator to prevent coalescence of generated microbubbles
- * Confirmed 30 µm in peak bubble radius through the mockup experiment at Target Test Facility in ORNL
- * Installed bubble generator in 3rd target vessel with the helium gas circulation system (closed loop) in October 2012

Target diagnostic system

- * Laser Doppler vibrometer (LDV) have been installed for monitoring the vibration of target vessel by proton beam injection
- * Corner cube reflector was directly machined on pure gold plate by newly developed micro machining technique (Ni mirror of #1 target corroded)
- * Mirror part is directly contacting with the mercury (mono-structure)

Effect of microbubble on vibration

- * High-frequency components resulting from the mirror ringing is superimposed on the dynamic response of the target vessel, because the mirror was fixed on safety-hull by bolt
- * First peak and damping of the vibration are dramatically reduced by injecting microbubbles

7

Displacement and stress reduction by bubbles

Displacement change by injecting bubbles

Estimated from integral of low pass filtered LDV responses

LS-DYNA simulation

Vibration at the mirror is correlated with the stress and displacement at the beam window

- ***** Displacement <u>at mirror</u> (top wall) is reduced to 1/4
- Stress at beam window may be reduced by bubbling

>>Prolong fatigue life

* Negative pressure in ms-order may be dramatically reduced by bubble >>Reduce cavitation damage

Effect of beam condition on vibration

- * Bubbling cases shows a large scatter, since the bubble distribution is fluctuated
- * Velocity amplitude of the vibration is correlated with the beam conditions
- * Effect of gas microbubbles on pressure wave mitigation will be enhanced by increasing in beam intensity

Effect of void fraction

* Peak amplitude of LDV is correlated with the void fraction

Peak velocity was normalised at w/o bubble case predicted based on beam experiments $V \propto a P^{\alpha} Q^{\beta}$

* LDV denotes the same tendency of the numerical simulation

* In December 2013, L/G separator has been installed to prevent the gas accumulation in the target vessel

Variation of bubbling effect

- * Small amount of gas is gradually accumulated downstream of the surge tank, however, the amount has no effect on the heat removal even at 1MW operation
- * Bubbling effect seems to be enhanced with the increasing in beam power

Damage inspection of the 3rd target

- * Cavitation damage in target vessel was inspected by cutting the beam window portion
- * Remote camera was broken by high-radiation environment

J-PARC

12

Cavitation damage inside target vessel

- * Cut specimen of beam window fell inside vessel
- * Gave up picking up fallen piece from target vessel due to radiation safety
- * V-shape damage and severe cavitation damage are not recognised

Damage mitigation by bubbling

JSNS #3 target

- * Beam power and the total number of pulses (higher than 250kW) of JSNS #3 target is almost the same as SNS #1
- * Severe cavitation was mitigated by injecting microbubbles

Summary

- * Gas microbubble injection system have been installed in the JSNS target system for mitigating the pressure waves and cavitation damage
- * Vibrational velocity of the target vessel was monitored through the laser Doppler vibrometer (LDV)
- * Amplitude of vibrational velocity is reduced to 1/3~1/4 of without microbubble injection
- Stress amplitude of the beam window may be reduced by injecting mirobubbles, and fatigue life of the target vessel will be prolonged
- * Cavitation damage was reduced by injecting gas microbubbles