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Operation histories of JSNS targets
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** No-leakage detected after 2050 MWh operation at 300 kW
* 3rd target is replacing to double flow target in 2014
maintenance period




Suppression of pressure waves «J-PARC

by injecting gas microbubbles

p Mechanisms of pressure wave mitigation N
- Absorption ~

Bubble contraction
Absorb thermal expansion by

. contraction of microbubbles

Suppression N

- Attenuation N
Bubble oscillation Injected bubble suppress negative
Attenuate by thermal pressure by its growing
dissipation of kinetic energy ~ o
\\ J Futakawa, et al., J. Nucl. Sci. Technol., 45 (2008) 1041 y

** Requires 50 um in radius and 10 in void fraction
for mitigating pressure waves 3
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JSNS bubbling system
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JSNS mercury circulation system

#3 target vessel with bubble generator

** Developed multiple swirl type microbubble generator to prevent
coalescence of generated microbubbles
** Confirmed 30 um in peak bubble radius through the mockup experiment

at Target Test Facility in ORNL
** Installed bubble generator in 3rd target vessel with the helium gas 4

circulation system (closed loop) in October 2012
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Target diagnostic system

LDV unit —> LDV system was upgraded in 2012

> Velocity range: 0.01~0.5 m/s -> 0.01~ 10 m/s
To control room Frequency range: 1 Hz ~ 300k Hz -> 0.3 Hz ~ 3M Hz
Data sampling: 1MHz

Laser
head

Position
controller

Mirror assy

Mirror\: /Safety hull

____—Water shroud

Mercury vessel
Moderators

Mono-structure at mirror part

** Laser Doppler vibrometer (LDV) have been installed for monitoring the
vibration of target vessel by proton beam injection

** Corner cube reflector was directly machined on pure gold plate by newly
developed micro machining technique (Ni mirror of #1 target corroded)

** Mirror part is directly contacting with the mercury (mono-structure) >



Effect of microbubble on vibration
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* High-frequency components resulting from the mirror ringing is

because the mirror was fixed on safety-hull by bolt

** First peak and damping of the vibration are dramatically

reduced by injecting microbubbles
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Displacement and stress reduction by bubbles

313 kW 2.8 J/cc/pulse
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Displacement change by injecting bubbles

Estimated from integral of
low pass filtered LDV responses LS-DYNA simulation
Vibration at the mirror is correlated with the
stress and displacement at the beam window

Velocity amplitude at mirror, m/s

*k Displacement at mirror (top wall) is reduced to 1/4

*k Stress at beam window may be reduced by bubbling
>>Prolong fatigue life

*k Negative pressure in ms-order may be dramatically reduced by bubble
>>Reduce cavitation damage
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Effect of beam condition on vibration
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P: beam power [kW]

V oC Cl})cK Q: peak energy [J/cc/pulse]
a,B: constants

a is constant for W/O bubbles
non linear for with bubbles

** Bubbling cases shows a large scatter, since the bubble distribution

is fluctuated
** Velocity amplitude of the vibration is correlated with the beam conditions
** Effect of gas microbubbles on pressure wave mitigation will be enhanced

by increasing in beam intensity 8



Effect of void fraction
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Pressure wave propagation in
bubbly mercury (uniform size)
obtained from simulation

* Peak amplitude of LDV is correlated with the void fraction
Peak velocity was normalised at w/o bubble case predicted based on beam
experiments V o« aP® Q"
** LDV denotes the same tendency of the numerical simulation
** In December 2013, L/G separator has been installed to prevent the gas

accumulation in the

target vessel



Displacement velocity, m/s

He flow rate, m3/h
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Variation of bubbling effect
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* Small amount of gas is gradually accumulated downstream of the
surge tank, however, the amount has no effect on the heat removal
even at 1MW operation

** Bubbling effect seems to be enhanced with the increasing in beam

power
10
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Damage inspection of the 3rd target

Measured dse rate at th center
of beam window is 310 Sv/h
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** Cavitation damage in target vessel was inspected by cutting

the beam window portion
** Remote camera was broken by high-radiation environment




(%J-PARGC

Cavitation damage inside target vessel

Concave surface of
~innerwall

Smooth cut surfaces

Fallen
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* Cut specime of beam window fell inside vessel

** Gave up picking up fallen piece from target vessel due to radiation safety
12

* V-shape damage and severe cavitation damage are not recognised
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Damage mitigation by bubbling
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JSNS #3 target

** Beam power and the total number of pulses (higher than 250kW) of
JSNS #3 target is almost the same as SNS #1

* Severe cavitation was mitigated by injecting microbubbles
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Summary

** Gas microbubble injection system have been
installed in the JSNS target system for mitigating the
pressure waves and cavitation damage

** Vibrational velocity of the target vessel was
monitored through the laser Doppler vibrometer (LDV)

* Amplitude of vibrational velocity is reduced to 1/3~1/4
of without microbubble injection

* Stress amplitude of the beam window may be
reduced by injecting mirobubbles, and fatigue life of
the target vessel will be prolonged

* Cavitation damage was reduced by injecting gas
microbubbles
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