

Design and test of a mass exchanger for oxygen control in liquid lead bismuth eutectic

<u>A. Marino ^{1, 2}, J. Lim ¹, S. Keijers ¹, K. Rosseel, A. Aerts¹ J. Deconinck ²</u>

¹ Chemistry and Conditioning Program, SCK•CEN ² Research Group Electrochemical and Surface Engineering, VUB Brussels

12th International Workshop on Spallation Materials Technology 19-23 October 2014

Outline

Introduction

- MYRRHA
- Issues and the importance of oxygen control in the use of LBE
- Oxygen monitoring and control system
- PbO mass exchanger design
 - Overview
 - Test results in CRAFT loop
 - Modeling
 - Test results in MEXICO loop
- Conclusion

MYRRHA

- Lead-bismuth eutectic (LBE) is the spallation target and primary coolant of MYRRHA:
- Opportunity
 - Excellent neutron yield
 - Low neutron reaction cross sections
 - Low melting point
 - High boiling point
 - Excellent thermal properties
- Challenge
 - Corrosive to steel
 - Liquid metal embrittlement

Issues and the importance of oxygen control in the use of LBE

- Material compatibility
 - Liquid metal corrosion
 - depends on material, temperature, flow rate, oxygen, etc.
 - Liquid metal embrittlement
 - depends on material, temperature, oxygen, etc
- Risk of plugging
 - PbO formation
 - resulting from excessive oxygen
 - Corrosion products
 - depends on materials, temperature, flow rate, oxygen, etc

Oxygen control boundary

How to control dissolved oxygen in liquid LBE ?

Oxygen control techniques

Gas phase

- Pulse injection of oxygen with continuous gas injection
- Mixture gas H_2/H_2O mixture
- Electrochemical method
- Solid phase
 - Control dissolution rate of solid oxide (PbO)
 - Solid PbO pebbles mass exchanger (PbO MX)

$$[PbO]_{surface} \rightarrow [Pb]_{LBE} + [O]_{LBE}$$

PbO MX design: overview

PbO MX for CRAFT loop

Experimental loop: CRAFT

CRAFT

- Non-isothermal loop
- Oxygen conditioning system
- Wide range of operating conditions

Corrosion in flowing LBE

Dissolution rate measurments

- Fixed temperature
- Flow rate variation

Dissolution rate measurments

Temperature variation

Flow rate variation

 Calculation of the **dissolution rate** of PbO packed bed of spheres from oxygen concentration measurments in CRAFT :

$$\dot{q} = \dot{m} \cdot (c_{out} - c_{in}) \qquad [g/h] \qquad (1)$$

Calculation of mass transfer coefficient for each condition (temperature and velocity) :

$$\dot{q} = KA \cdot (c_s - c) \qquad [g/h] \qquad (2)$$

• c_{out} = average outlet oxygen concentration, c_{in} = average inlet oxygen concentration, k = average mass transfer coefficient [g/cm²h], c = average oxygen concentration, A = surface area of PbO [cm²].

Calculation of the Sherwood number from mass transfer coefficient :

$$Sh = K \cdot \frac{l}{D \cdot 360} \qquad [-] \qquad (3)$$

Correlation of Sherwood number based on all measured data (temperature and velocity) :

$$Sh = A \cdot Re^n Sc^m \tag{4}$$

$$Sc = \frac{v}{D}$$
, $Re = \frac{w \cdot l}{v}$ $l = \frac{2}{3} \frac{\varepsilon \cdot d}{1 - \varepsilon}$

Sh= Sherwood number, D=oxygen diffusion coefficient [m²/s], l=characteristic lenght [m²], v= kinematic viscosity [m²/s], w = velocity [m/s], ε = porosity

Experimental results

- Good agreement with Russian data
- Flat maximum at high velocity

Modeling: full scale simulation

- A. Marino, J. Lim, S. Keijers, J. Van den Bosch, J. Deconinck, "Numerical modeling of oxygen mass transfer from PbO spheres packed bed to liquid lead bismuth eutectic: A venturi-type PbO mass exchanger", Nuclear Engineering and Design, 265 (2013), 576–581
- A. Marino, J. Lim, S. Keijers, J. Van den Bosch, J. Deconinck, F. Rubio, K. Woloshun, M. Caro, S. A. Maloy, "Temperature dependence of dissolution rate of a lead oxide mass exchanger in lead-bismuth eutectic", Journal of Nuclear Materials, 450, (2014) 270-277
- A. Marino, J. Lim, S. Keijers, S. Vanmaercke, A. Aerts, K. Rosseel, J. Deconinck, J. Van den Bosch, "A mass transfer correlation for packed bed of lead oxide spheres in flowing lead-bismuth eutectic", International journal of heat and mass transfer, 80 (2015) 737-747

Modeling validation

2000 < Re < 9000, 30 < Sc < 600

Venturi-type mass exchanger

Venturi-type mass exchanger

Venturi (top view)

- Tungsten carbide (Hardide T) coating on the inner surface of venturi neck to prevent erosion
- Pipe ID = 78 mm
- Venturi neck D = 12 mm

PbO basket (top view)

PbO sphere

- : 12 mm diameter
- : 92.4% of theoretical density

Experimental loop: MEXICO

- Non-isothermal loop
- Oxygen conditioning system
- Wide range of operating conditions

MEXICO

Integrated LBE chemistry

MEXICO Results : Oxygen control by PbO MX

Experiments on PbO MX dissolution have been successfully carried out at the CRAFT loop, SCK•CEN, Belgium:

- PbO spheres showed good mechanical and heat resistance
- Nearly-linear relation between velocity and dissolution rate: mass transfer limited kinetics
- No evidence of PbO poisoning
- Highly accurate oxygen control achieved by oxygen control systems during first experimental campaign.

Thank you for your attention!

MEXICO Results : PbO spheres after test

