

Mechanic properties and microstructure of CLAM steel irradiated in STIP-V

PENG Lei ¹, GE Hongen ¹, DAI Yong ², HUANG Qunying ³

¹ University of Science and Technology of China (USTC)

² Paul Scherrer Instiut, Switzerland

³ Institute of Nuclear Energy Safety Technology, CAS, China

Introduction

Tensile & Hardness

Microstructure

Discussion

Conclusions

Neutron Irradiation in Fusion Reactor

Work condition
High Temp.
Neutron irradiation
High heat flux
Stress
Corrosion

Irradiation condition

High energy	14 (MeV)
High flux	$>10^{15} (n/cm^2 s)$
High DPA	>20 (dpa/yr)
High Helium	>10 (appm/dpa)
High temp.	300~500 (°C)

Irradiation effects
Swelling
Hardening
Embrittlement
Creep
Fatigue

Candidate structure material of China Fusion Experimental Test Reactor (CFETR)

Power/ MW 50-200 500 TBR >1.2 Duty time 30%-50% 4%		CFETR	ITER	
TBR >1.2 Duty time 30%-50% 4%	Power/ MW	50-200	500	Cap Breed unit
Duty time 30%-50% 4%	TBR	>1.2		Stiffening Back plate
	Duty time	30%-50%	4%	Purge gas He coolan

- Ferretic/Martensitic steel China Low Activation Martensitic steel Large heats have been characterized, industrial heat production achieved
- Stainless Steel CT91, C316Ti

Large heats have been characterized, industrial heat production achieved

Neutron irradiation tests have been under way.

Neutron Irradiation Program

> 5	Spallation	Target	Irradiation	(PSI: SINQ)
-----	------------	--------	-------------	-------------

Period	Program	Dose/Temp.	Material
2007~2008 2010~2011 2013~2014	STIP-V STIP-VI STIP-VII	<mark>3~20 dpa</mark> 100~1600 appm He 300~500 ℃	CLAM C316Ti

,	Fission Re	eactor Irrad	iation (NPIC: HEET	ſR)	
	Period	Program	Dose/Temp.	Material	
	2010~2012 2012~2013	NPIC-I NPIC-II	<mark>1~3 dpa</mark> <1 appm/dpa 300~500 ℃	CLAM CT91	

SINQ Target Irradiation Program – V/VI/VII

STIP-V (56 samples) irradiation was finished and PIE is under way. STIP-VI (120 samples) and STIP-VII (120 samples) irradiation is finished in 2014.

Material		Zone	Irr. Temp.	Sample	Numble
STIP-V	CLAM	Zone 1	100~500 ℃,	12 ST, 18CH, 18 TEM, 2 SANS	56
	CLAM	Zone 1	300~350 °C,	12 ST, 12CH, 12 TEM, 8 BB	44
	CLAM	Zone 3	450~500 ℃	12 ST, 12CH, 12 TEM, 8 BB	44
STIP-VI	CLAM-HIP	Zone 3		8 BB,	8
	CLAM-EBW	Zone 3	300~350 ℃ 450~500 ℃	12 ST, 12 TEM	24
	CLAM-PbLi	Zone 3		6 LT, 4 BB	10
	CLAM, C316Ti	Zone 1	300~350 ℃, 450~500 ℃	12CH, 8BF, 12 TEM	32
	CLAM, C316Ti	Zone 3		8BF, 12 TEM	20
5112-011	CLAM-HIP	Zone 3		8 BB	8
	CLAM-EBW	Zone 3		12 ST, 12 TEM	24

Introduction

Tensile & Hardness

Microstructure

Discussion

Conclusions

Tensile Curves & Crack Surface

Test at R.T.

Test at irradiation temperature

Strength and Elongation

Micro-hardness (HV0.2)

Introduction Tensile & Hardness *Microstructure* Discussion Conclusions

University of Science and Technology of China

Clusters & Loops

TEM Image condition: WBDF (g, 5g), g = 110

As irradiated

After annealing (600°C *1h)

Bubbles

TEM Image condition: WBBF, g = 110

As irradiated

Introduction Tensile & Hardness Microstructure *Discussion* Conclusions

Hardening

 Δ YS (at R.T.) = 3.21 Δ HV0.2,

Annealing Effect

University of Science and Technology of China

Barrier Strength of Defects

Barrier strength (α) of cluster/loop with size<20 nm is about 0.2~0.25. Barrier strength (α) of Helium bubble with size<1.5 nm is about 0.13~0.21, and decrease after annealing.

More microstructure observations of higher irradiation temperature samples is under way

Possible reason for high irradiation temperature softening:

- 1. Large scale and low density of bubbles?
- 2. Precipitates change (scale, density, composition)?

20.3dpa/400°C/1800 appm He irradiated in STIP-II, [Jia. JNM 356 (2006) 105]

Introduction Tensile & Hardness Microstructure Discussion **Conclusions**

Conclusions

The present results of CLAM steel irradiated in STIP-V show that:

- There is a good linear correlation between hardening and square root of irradiation dose (<22 dpa) / Helium concentration (<1530 appm) before annealing.
- 2) High irradiation temperature (>350°C) could educe hardening in lower temperature and softening. And hardening peak is at 250~350 °C.
- 3) 600°C /1h annealing can mostly anneal out the irradiation induced defects and possibly make small bubbles (<1nm) grow to big bubbles (1~1.5 nm)</p>
- Barrier strength of cluster/loop with size<20 nm is about 0.2~0.25. Barrier strength of Helium bubble with size<1.5 nm is about 0.13~0.21, and decrease after annealing.

Thank you for attention!