

Wir schaffen Wissen – heute für morgen

Evaluation of neutron irradiation induced embrittlement of T91 steel

Hongen Ge^{1,2,3}, Tielong Shen^{1,4}, Vladimir Krsjak¹, Yong Dai¹

¹Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland ²University of Science and Technology of China, Hefei, Anhui, 230027, China ³Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

PAUL SCHERRER INSTITUT

- SPT experiments
- Annealing effect
 - Hardness tests
 - Positron Annihilation Analysis
 - Microstructure observation

Summary

2

- SPT experiments
- Annealing effect
 - Hardness tests
 - Positron Annihilation Analysis
 - Microstructure observation

Summary

Ferritic/Martensitic steels are considered as candidate materials for the containers of the liquid target of spallation neutron sources and accelerator driven systems (ADS) in the future.

A major concern for ferriticm/artensitic steels such as T91 is the irradiation induced embrittlement.

In the present work, the embrittlement of T91irradiated in fission reactor has been examined by using the small punch technique.

In addition, annealing temperature effect on hardeness has been studied by TEM observation and positron annihilation analysis.

- SPT experiments
- Annealing effect
 - Hardness tests
 - Positron Annihilation Analysis
 - Microstructure observation

Summary

6

Material & Irradiation conditions:

The commercial ferritic/martensitic steel T91(9Cr-1MoVNb) irradiated in BR2 during the SPIRE irradiation campaign, up to 3.58 dpa at 200 °C.

Element	С	Cr	Мо	W	Nb	V
wt%	0.1	8.32	0.96	<0.01	0.06	0.24
Element	Р	Mn	Ni	В	Ν	Si
wt%	0.02	0.43	0.24	<0.0005	0.03	0.32

Samples:

- ✓ 3*3 mm² sheets have been cut from KLST sample by diamond wire saw, the thickness are ~ 400 µm;
- ✓ Polished with sand paper down to 243 ~ 254 µm,
 the final polishing is made with 1200 Grid sand paper;
- Cleaned in acetone and ethanol with ultrasonic bath.

SPT experiments:

A schematic overview of the set-up of

small punch test (from X. Jia, Y. Dai /

JNM 323 (2003) 360–367).

Puncher is installed into MTS mechanical testing machine (max. load capacity of 2 kN);

Balls have Ø = 1 mm;

Constant crosshead speed of 0.3 mm min⁻¹;

Temperature is measured in 0.5 mm away from the sample;

The displacement is measured as displacement of the testing machine crosshead.

PAUL SCHERRER INSTITUT

Small Punch Test curves

9

The curves are shifted in deflection on N*0.2 (mm); N – the number of curve

Experimental data: TT determination

$$\Delta DBTT_{\text{KLST-Charpy}} = 131 \text{ °C}$$

$$\alpha = \frac{\Delta TT_{SP}}{\Delta DBTT_{Charpy}} \approx 0.40$$

DBTT shift from KLST Charpy tests (M. Matijasevic, E. Lucon, A. Almazouzi/JNM 377 (2008) 101–108)

- SPT experiments
- Annealing effect
 - Hardness tests
 - Positron Annihilation Analysis
 - Microstructure observation

Summary

Annealing on the samples of hardness tests, Positron Annihilation Analysis and TEM were conducted step by step at a series temperature of 300~700°C;

Micro-hardness have been measured before and after annealing.

Positron annihilation techniques were used to investigate small defects induced by irradiation;

Characterization of the major trapping centers in the as-irradiated materials

	n – irradiated T91 (2.95dpa)			
Defect 1 (tau2)	Dislocations + some point defects			
Defect 2 (tau3)	Void (~20 vacancies)			
N ₁ [m ⁻³]	5.2 × 10 ²⁴			
N ₂ [m ⁻³]	5.0 × 10 ²²			

Number density of defect 1 was calculated using specific trapping rate for mono-vacancy (t $_{1V} \cong t_{12V-12He}$). For defect 2, data on irradiated Cu were used [*Eldrup, Singh, J. Nucl. Mater. 251 (1997)*]

T91 steel irradiated in a fission reactor shows a complete recovery of the microstructure after annealing at > 500°C.

IWSMT-12, 22 October 2014, Bregenz, Austria

17

PAUL SCHERRER INSTITUT

After annealing (400°C)

After annealing (500°C)

PAUL SCHERRER INSTITUT

After annealing (600°C)

After annealing (700°C)

Dislocation line density

TEM observation showed that the density of dislocation line decreased with the increasing of annealing temperature.

Before annealing, average loop size is 2.49 nm and its density is 1.78 E22m-3.

PAUL SCHERRER INSTITUT

- SPT experiments
- Annealing effect
 - Hardness tests
 - Positron Annihilation Analysis
 - Microstructure observation

- Set of SP experiments for TT_{SP} evaluation has been performed, and the ratio of ΔTT_{SP} to $\Delta DBTT_{KLST}$ is 0.40;
- Hardness decreased with the increasing of annealing temperature, and it become stable at the annealing temperature >500 °C;
- Positron Annihilation analysis results showed that a complete recovery of the microstructure after annealing at > 500 °C;
- TEM observation showed that the density of dislocation line after annealing have the similar tendency with hardness.

Thanks for SCK·CEN to provide the samples !

Thank you !

IWSMT-12, 22 October 2014, Bregenz, Austria