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e MOTIVATION

1) requirement of reliable accelerator-driven systems (ADS) for an effective transmutation

of long-lived radioisotopes in the nuclear fuel;
2) requirement of affordable neutron sources for the neutron scattering and imaging

techniques;
3) requirement of irradiation facilities that enable greatly accelerated irradiation studies

with fusion-relevant transmutation rates.

To understand HELIUM embrittlement means to understand the
helium-vacancy interaction at sub-nm scale level

Problem! Spatial resolution limits (and/or sampling of small area) and
low sensitivity to helium at most experimental methods.
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BS WHY POSITRON ANNIHILATION?

Vel biv vl Self-Seeking
. . . . . . . . (positron diffuse typically ~100nm in metals and seek for

sites with higher positron affinity than bulk i.e. it
is attracted by certain type of defects!)

Non destructive

Sensitive

Sensitivity range (detection limit
Defect type vs. saturated trapping)
neutral vacancies 5x102%1... 102> m3
dislocations 1012 ... 5x101> m>2

Macroscopic samples

,,_;-f‘" ‘\".;;' Information on sub-nm scale features from a large volume
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Helium presence in defects affect positron lifetime and
changes the electron momentum distribution
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HOW DO WE DO THAT

Positron
Annihilation

Lifetime

Two techniques of positron annihilation

spectroscopy, based on different physical

principles, have been widely established
in the material research.

Spectroscopy

e’ source thermalization

. 00/0000

Coincidence
Doppler
Broadening

Spectroscopy

Positrons annihilate mainly with the electrons of
the outermost shell due to the repulsion of the

= diffusion

nucleus. Such annihilation results in Ey = 511keV.
But the annihilation occurs also with core electrons
(electrons with higher momentum). Several factors
determine the increase of the positron—electron

o O o O o O typical annihilation probability at certain momenta.
diffusion i

O O _,.'.O o O 22100 nm
OO0 O\O OO0

trapping

After thermalization (~ 3ps), positron diffuse through
the lattice until trapping / annihilation. Diffusion time
and trapping rate are a function of the microstructure

and they can be measured.

length:

Counts
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(-] HOW DO WE DO THAT

Open volume defects Coincidence

Positron
Annihilation 1 Doppler

Lifetime localization of positrons in open-volume defects Broadening

Spectroscopy \ Spectroscopy

fraction of valence electrons (low momentum) taking
¢’ source thermalization part in the annihilation process is increased

- o OZO o O o comparing to core electrons (high momentum)
g o o o o O O The momentum distribution curve is narrower

< diffusion than that of defect-free reference material

000000

=~ length:

OO{: ,Ooo 2=100 nm

-

000000

trapping

typical
diffusion

Counts

Positron lifetime increases due to trapping at
sites with reduced electron density

EO =511keV Energy
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(T e HOW DO WE DO THAT

Materials: (EM10, CLAM, Eurofer 97, F82H, Optifer,
MA956, ODS Eurofer, T91 ...)

Irradiation doses: (5 —21dpa)
Irradiation temperatures: (100 — 600° C)

Annealing temperatures: (200 — 800" C)
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RESULTS
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A good correlation between PASL and CDBS
results were observed in all samples

ferritic/martensitic  steels irradiated in
spallation target, J. Nucl. Mater,

DOI: 10.1016/j.jnucmat.2014.10.014
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RESULTS

=
Large defects (lifetime ~ 450ps )
o] Troevetal.2009 . Saturated positron lifetime for an
/* empty vacancy cluster
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Figure 3 Correlation between positron lifetime and the number

Number of vacancies

of vacancies in a nano-void in bce iron.

Saturated positron lifetimes for large vacancy
clusters with helium
(calculations of J. Kuriplach, 2014)

Since we have observed positron lifetimes above 400ps (large vacancy clusters) in all
materials, there must be only small amount of helium in these defects. As we have not seen by
TEM vacancy clusters, they must not be much larger than ~ 30vacancies
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RESULTS

=
Small defects (lifetime ~ 200ps )
300 - "«.\ Troev et al. 2009
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Isolated He atom has an
extremely low migration energy;

He mobility drastically reduced in
the vicinity of defects

Most of He is expected to be
accommodated by defects
(at 6dpa ~ 450appm He)

Figure 4 Correlation between positron lifetime and the number
of helium atoms in nano-void (B) 1V+nHe, (D) 2V+nHe, (F)

6V+nHe, (H) 12V+nHe.

- Small defects (lifetime ~ 200ps): - —omphydivacancy
- —GvacaRey—+2=3tHe—

12 vacancy + 12 He

IWSMT 12, Bregenz Austria, October 22M 2014



Small defects t, ~ 200 ps Large defects t, ~ 450 ps

DFT simulations + experiments

Trapping model

Small defects N, ~ 12 vacancies (high He) Large defects N, ~ 30 vacancies (low He)

Three-state trapping model

l; , 3— components intensities

Ty 53 — lifetime components

1, = 1/ A, — lifetime in defect-free bulk
D,, D, (indexes) — defect 1, defect 2
Kp1pz — POsitron trapping rate at defect
(proportional to defect concentration

i 1 . 1 T _i i 1 N and positron trapping coefficient of
1 21 ﬂb K+ K, 2 X’Dl 3 /102 the given defect ).
L1, (Aoy — Ao,) + 1, (A — As,) (A, —Ao) + 1 (A —
K, = 2'3 1 D2 2 1 :luDlNDl K, = 2 3(2132 Dl) 3(ﬂ‘o ﬂ’DZ) ::uDZNDZ

l, l,

Small defects number density ~ 1024 Large defects number density ~ 1022
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RESULTS

"~ Small defect 12vacancy cluster with 12 helium atoms (He/V =1) ~10% m3
Large defect — 30 vacancy cluster with 3 helium atoms (He/V = 0.1) ~ 10> m-3

Material dpa/ He N, N, Heindefectl  He in defect 2 He total He total
t[°C] appm  [m7I] [m3] [m3] [m3] PALS [m?]  Theory [m?]

(g%tgeé) g; 450  2.7x10% 2.3x102  3.3x10% 5.3x102 3.3E+25 3.8E+25

Optifer 6.1

(internal o 450 3.1x10% 15x102  3.8x10% 4.6x102 3.8x10% 3.8x10%

source)

(SEMIil’()Z) g; 450 34x10% 51x102  4.0x10% 1.2%1022 4.0x10% 3.8x10%

(SI:ﬁéHz) 5125 465  3.1x10% 1.5x1022 3.7x10% 3.3x1022 3.7x1025 4.0 x10%

(ESuTrclalie\r/) flfé ~450 25x10% 18x102  3.0x10% 5.5x102 3.0x102%5 3.8x102%5
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(-] RESULTS

Lets take low dpa sample and lets assume that all helium is in
small vacancy clusters:

- We know the helium concentration (400 — 500 appm
for low-dose STIP sample)

- We know the vacancy clusters number density

a2

What happens to the actual
He/V ratio at different
temperatures?
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(-] RESULTS

This work: B Irradiation (dpa 6.1 -20.4) @ Annealing (dpa=7.4)

Stoller-Osetsky JNM 2014: MD simulations - different cluster sizes O
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310

1| Various materials irradiated to 20dpa I CLAM

300 - O
Irradiation  temperature is an
2901 important (major?) factor in the
formation of the irradiated
microstructure
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At high dpa, the positron trapping is a
_ function of size and concentration of
24090 EM10 large vacancy clusters/bubbles. This is a
function of temperature.
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1.15
Theoretical:
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o SUMMARY AND CONCLUSIONS

- 10 ferritic/martensitic steels and more than 100 samples have been investigated
by means of positron annihilation spectroscopy techniques in the last 2 years.
Effect of dpa, irradiation and annealing temperature was studied

- These experiments offer qualitative and quantitative information on sub-nm
scale helium-vacancy clusters, which cannot be obtained by any other
experimental technique

- Helium peak was clearly identified in the CDBS spectra of annealed spallation
samples, which demonstrates its presence in major positron trapping sites
(vacancy clusters)

- Small vacancy clusters with the mean size of 12 vacancies contains the majority
of helium. He/V ratio was estimated ~1 in most as-irradiated samples and
increase with annealing temperature to ~1.5.

- Large vacancy clusters (> 0.8nm), identified in all samples, contains only small
amount of helium. Their size increase with irradiation/annealing via absorption
of vacancies — increase of positron lifetime and CDBS S-parameter. We assume
that these defects evolve eventually to helium bubbles, which can be seen by
TEM at elevated temperatures/doses.
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