

How to find radiation hard components?

Thomas Gahl ESS Motion Control & Automation Group

thomas.gahl@esss.se

DENIM 2018, PSI, Switzerland 18th September 2018

What are we looking for?

- What components?
 - Motors
 - Feedback systems
 - Limit switches, reference switches
 - Connectors
 - Cables
 - Frontend electronics
- What materials?
 - Conducting materials: Metal (Cu, Al, Fe etc.)
 - Magnets, springs
 - Isolating materials: Polymers, rubber, resins etc.
 - Optical materials: Glass, polymer etc.
 - Electronics: Semiconductors, passive components

What types of radiation do we have ?

- Applications in Neutron Scattering require resistance to a combination of gamma radiation, neutron radiation and in some cases high temperature.
- All radiation produces some damage, therefore, the issue becomes how much radiation and what kind of radiation can an object sustain while maintaining its operation specification.

• Next problem of Neutron flux is activation of material: not covered in the talk!!

What radiation levels do we expect?

EUROPEAN

SOURCE

How to find? 1. Ask your colleagues!

- Other radiation facilities and applications:
- Reactor and Spallation Sources
- Fundamental physics facilities
- Fusion technology projects (ITER)

	Gamma	Thermal n	Fast n	Max. energy
ILL	10 ¹⁺	1	10 ⁻⁵	20 MeV
SNS			10 ⁻²	200 MeV
ESS	1	1	1	200 MeV
CERN			10 ^{1+*)}	TeV
ITER	n.a.	n.a.	10 ^{6+ **)}	14 MeV

How to find? 2. Ask your supplier!

- Military applications (one shot)
 - Communication electronics
 - Launch control, remote control (robots, drones)
 - Nuclear Event detector
 - Cables, connectors
- Space applications (continuous)
 - Communication electronics
 - Remote control, remote handling
 - Sensors for scientific experiments
 - Cables, connectors
- Nuclear Power Plant (NPP) applications, ITER
 - Remote control of actuators and valves
 - Remote handling of nuclear waste
 - Remote replacement of parts in vacuum (ITER)
- High temperature industrial applications
 - General automation applications > 100°C
- Polymers in medical use
 - Tools and containers to be sterilised with gamma radiation

Radiation dose levels – Wittenstein DC motor "rad resistant", 10kGy, "rad hard", 10MGy

- The brushless servo motors for radiation environment provide outstanding reliability and precision.
- cyber[®] rad hard motors excel in high total absorbed radiation doses, featuring a high-grade stainless steel housing and specialized materials.
- cyber[®] radiation resistant motors exclude certain materials for use in low radiation fields.

Radiation dose levels – TE LVDT "Mild radiation resistance", 100kGy, 10¹² NVT

EUROPEAN SPALLATION SOURCE

RoHS

HR-Z SERIES Mild Radiation Resistance LVDT

FEATURES

- Mild radiation resistance
- Large 1/16" core-to-bore clearance
- Shock and vibration tolerant
- Electromagnetic/electrostatic shielding
- Calibration certificate supplied with each unit

APPLICATIONS

- Mild radiations areas
- High temperature applications
- Process control
- Factory automation
- Applications with large misalignments

HR SERIES General Partners 1997

RADIATION RESISTANCE

Cartain applications require resistance to a combination of gamma radiation, neutron radiation and high temperature. Before considering detailed specifications and suitability for a particular application, a neisee of the following working detritions and equivalents is appropriate.

Total integrated neutron flux

The total integrated neutron flux (also called neutron fluence) is the neutron flux integrated over time. Neutron flux: the total distance insurting by all neutrons per unit time and volume Formula to neutron flux: number of neutrons volume a distance time – neutron density x velocity Neutron density: number of neutrons (r) per unit volume.

Formula for total integrated neutron flux: neutron density x velocity x time = neutron density x distance

Unit for total integrated neutron flux: nim² x m = mm²(n: number of neutrons; m: meter)

> NVT (n/am²) Conversion: 1 NVT = 10⁴ n/m²

Gamma-ray total integrated dose (TID) radiation

The absorbed dose of ionizing radiation is the amount of energy deposited per unit of mass.

Units: rad (radiation absorbed dose): radiation that will deposit 0.01 Joule of energy per klogram of matter

⁴⁰ Grup; radiation that will deposit 1 joule of energy per kilogram (SI unit) Conversion: 1 Gy = 100 rad

All indication produces some damage, therefore, the issue becomes how much radiation and what kind of radiation can an abject austain while maintaining its operation specification. All best, this can only be an estimate

When realised energy fails on an object, equal amounts of energy from different sources may result in greatly different sources may also result in qualitatively different kinds of damage. One method to quartify these different sources may also result in qualitatively different kinds of damage. One method to quartify these different sources is to determine the rate of realiation that a unit can withstand without initiatintaneous and unicceptable damage from solution is to determine the total integrated flux that can be absorbed before "wear-out" damage from solution acours. The distinction between rate of flux and total integrated flux must be kept clearly in mind.

There is no direct relationship between neutron fluence and gamma radiation. If we assume equal energy dissipation from differing sources, the energy absorbed by the unit will vary with its absorption cross section. If we try to equalize damage, there is even more uncertainty because of the qualitative differences of the damage caused by various toms of indiation.

0.000

SENSOR SOLUTIONS -: HTL2 Series Rev. 8

Page 2

Radiation dose levels – AMCI resolver "Tefzel insulation for radiation applications"

EUROPEAN SPALLATION SOURCE

R11X-J10/7N Specification Sheet

SHEET # 940-2T341

DESCRIPTION

All of AMCI's resolvers are ratiometric, absolute position sensors that reliably operate in harsh environments. The R11X-J10/7N brushless resolver can be used in a wide variety of space critical applications where environmental sealing is not needed. Used in our standard resolver based transducers, the R11X-J10/7N is compatible with all AMCI modules and controllers. The resolver comes with 9 inch leads that have Tefzel insulation for radiation applications.

Radiation dose rate limits for ETFE (tables from different suppliers)

- 100kGy (Lapp cable)
- 1MGy (Nordion)
- 10kGy (AXON 2014)
- 100kGy (in air, AXON 2017)
- 300kGy (in vacuum, AXON 2017)
- 1MGy (crosslinked, AXON)

Radiation dose levels – DDC motion electronicss for space applications: "radiation tolerant", 1kGy

Radiation Tolerant 3-Phase BLDC Motor Torque Controller

Features Documentation

Request a Quote

- Self-Contained 3-Phase Motor Controller
- Operates as Current or Voltage Controller
- 1, 3, or 10 Amp Output Current
- 1.5% Linearity
- 3% Current Regulating Accuracy
- User-Programmable Compensation
- 10 KHz 100 KHz PWM Frequency
- Complementary Four Quadrant Operation
- Holding Torque Through Zero Current
- Cycle-by-Cycle Current Limit
- Designed to Meet 100 KRad Total Dose, 36MeV SEU Radiation Levels

EUROPEAN SPALLATION SOURCE

Radiation dose levels – Glas lenses for space applications: "Radiation-Hard", 9kGy

EUROPEAN

SPALLATION SOURCE

3rd Europa Jupiter System Mission Instrument Workshop, ESA ESTEC January 2010, D. Doyle, ESTEC, Optical Materials

Radiation dose levels – MAGICS electronics for remote handling at ITER: "Rad-hard", 1MGy, 300kGy/h

EUROPEAN SPALLATION SOURCE

- A resolver/LVDT to digital converter to read out angle information from a resolver or linear distortion information from a LVDT.
- A resistive bridge sensor signal conditioning ASIC to read out sensors such as RTD, thermocouple, and strain gauge.
- A 24V 10-channel limit switch conditioning ASIC to read the status of limit switches connected to it.
- A 24V 10-channel relay driver ASIC to drive high-side solid-state or mechanical relays.
- A bus communication ASIC to implement the BiSS interface (bidirectional/serial/synchronous) protocol, the SPI master protocol, and the RS485 bus transceiver.

Radiation dose levels – NAMCO limit switch for valves in nuclear power plants

• Mild Environment: "Low dose radiation resilience" , < 1MGy

NAMCO	Harsh Enviro Accident C	onment With Conditions	Harsh Envi Without Accide	ironment nt Conditions	Mild Environment		
Test Conditions	LOCA, HELB, Radiation, Siesmic Resistant		Radiation & Seismic Resistant		Low Dose Radiation & Seismic Resilience		
Model	EA120 - SP EA120 - DP		EA120 - SP	EA120 - DP	EA120 - SP	EA120 - DP	
Contacts	SPDT DPDT		SPDT	DPDT	SPDT	DPDT	
Connection	Flying Leads	Flying Leads	Flying Leads	Flying Leads	Flying Leads	Flying Leads	
Options	QDC	QDC	QDC	QDC	QDC	QDC	

IIDOD

Nuclear qualified components

Meets or exceeds:

- AECL 98-30830-TS 008
- AECL 98-60000-TS 005
- AECL 98-60000-TS-006
- IEEE 323-1983
- IEEE 382-1985
- IEEE 572-1985
- IEEE 344 1975/87/2004
- IEEE 382 1985/1996/2006
- IEEE 323 1974/1983/2003
- RCC-E (K1 Under Review)

C7 – Containment Qualified (LOCA)

The C7 proximity switch was designed for use in containment and can withstand a Loss of Coolant Accident (LOCA) event for 1 year. It is certified to meet the highest vibration and submergence requirements in the nuclear industry. Available SPDT and DPDT

Qualifications

- IEEE 323-2003/1983/1974
- IEEE 344-2004/1987/1975
- IEEE 382-2006/1996/1980
- IEEE 383-2003/1974/1972
- IEEE 572-2004/1985
- Westinghouse AP1000
- RCC-E
- IEC 60780 (1998), 60980 (1989), & 60068 (2007)

SV7 – HELB/MSIV Qualified

Designed to endure a high energy line break (HELB) environment, the SV7 proximity switch can withstand 260°C (500°F) peak temperature during a HELB and operate continually at a temperature of 204°C (400°F).

CLASSIFICATION SUMMARY

Nuclear qualified components

EUROPEAN SPALLATION SOURCE

Meets or exceeds:

- AECL 98-30830-TS 008
- AECL 98-60000-TS 005
- AECL 98-60000-TS-006
- IEEE 323-1983
- IEEE 382-1985
- IEEE 572-1985
- IEEE 344 1975/87/2004
- IEEE 382 1985/1996/2006
- IEEE 323 1974/1983/2003

RCC-E (K1 Under Review)

C7 – Containment Qualified (LOCA)

The C7 proximity switch was designed for use in containment and can withstand a Loss of Coolant Accident (LOCA) event for 1 year. It is certified to meet the highest vibration and submergence requirements in the nuclear industry. Available SPDT and DPDT

Qualifications

- IEEE 382-2006/1996/1980
- IEEE 383-2003/1974/1972
- IEEE 572-2004/1985
- Westinghouse AP1000
- RCC-E
- IEC 60780 (1998), 60980 (1989), & 60068 (2007)

SV7 – HELB/MSIV Qualified

Designed to endure a high energy line break (HELB) environment, the SV7 proximity switch can withstand 260°C (500°F) peak temperature during a HELB and operate continually at a temperature of 204°C (400°F).

CLASSIFICATION SUMMARY

EUROPEAN SPALLATION SOURCE

Nuclear regulations and qualifications All qualifications are for safety related components!

USA:

IEEE 323 / IEC 60780: IEEE Standard for Qualifying Class 1E Equipment for Nuclear Facilities IEEE 383: IEEE Standard for Qualifying Electric Cables and Splices for Nuclear Facilities

France:

AFCEN: RCC-E 2012 EDF: CST 74 C 068 00: Cahier des Specifications Techniques - Cable Electriques pour Centrales Nucleaires

SAFETY CLASSIFICATION SYSTEMS COMPARISON

	Safety classified				
American	Non 1E				
Russian	K0, K1	К3			
Korean	Q	R			
French	K1	КЗ	Non Classified		

Specific nuclear qualifications:

- RCCE: Design and Construction Rules for Electrical Equipment for Nuclear Island
- CST/BTS: Book of technical specifications: Electrical Cables for Nuclear Power Plants
- IEEE 323: for nuclear power plant equipment
- IEEE 383: for (1) thermal aging,
 (2) radiation, and (3) LOCA test;
 with (1) (2) and (3) for last day
 accident simulation, and (2) and
 (3) for first day of operation.

Areas of a nuclear power plant (NPP) Safety classification according to RCC-E

EUROPEAN SPALLATION SOURCE

EPR CST (EDF) 74C068

К3

Standard zone : all external parts EDT-SEPTEN approval cable designs + ageing test for lifetime (10 days – 135°C)

K2

Sensitive zone : Safeguard Building = K3 + 250 kGy (1kGy/h) at 70°C

K1

Sensitive zone : Heart : K1 ADR cables (reactor building) as well as LOCA : = K2 + 600kGy (1kGy/h) at 70°C + accident test (156°C)

Example Generic Hot Spots

	Appli	icable environr	mental conditions	Reactor	Hot spot	T	Rad.	Dose
	Maximum	imum values in		type	location region	Temperature	dose rate	(40 yr)
	normai	Service	Accident conditions		Steam	47-48 °C	0.1	1
	Temp.	Total 40-yr dose		PWR	generator box	(max 100 °C)	Gy/h	Mrad
А	≤ 40 °C	≤10 ² Gy (0.01 Mrad)	N/A		Primary loop	50 °C	0.7 Gy/h	25 Mrad
		(0.01 Wildu)			Dravell pock		0.5	18
в	< 50 °C	≤5×104 Gy	N/A		Drywell neck	100 ± 5 °C	Gy/h	Mrad
0	3000	(5 Mrad)	10/0		Primary steam	70 . 5 .00	0.01	0.4
		<5×104 Gy		BWR	relief valve	70 ± 5 °C	Gy/h	Mrad
С	≤ 50 °C	(5 Mrad)	Applicable		Power range	80 ± 5 °C	0.24	8
D	Local condi	tions higher th	an for C (e.g. hot spots)		monitor	00 10 0	Gy/h	Mrad

IAEA-TECDOC-1188 vol1

Nuclear qualification Dose rates for radiation tests

EUROPEAN SPALLATION SOURCE

	projec- ted lifetime	Harsh environment (lifetime rad + accident)	HarshMildenvironmentenvironment(lifetime radiation)(no or very low radiation)		no radiation, no safety requirements
Areas of NPP		Reactor building	Safeguard building	Turbine Hall, Substation	Offices, Workshops
IAEA		C, D	В	A	
IEEE 323		1E LOCA	not specified	1E non-LOCA	non 1E
RCC-E		K1 (severe accident)	К2	КЗ	no class
IEEE 383	40Y	0,5 + 1,5 MGy	(0,5 MGy)	-	-
IEEE 383	60Y	0,75 + 1,5 MGy	(0,75 MGy)	-	-
CST 74C068	60Y	0,2 + 0,65 MGy	0,2 MGy	-	-

How to find? 3. Choose and test!

- Choose standard components with "promising" materials.
- Define carefully test environment (radiation type, flux, spectrum, specimen volume, source access etc.) and choose source accordingly.
- Performance tests before >> irradiation >> performance tests afterwards.
- Check with supplier when he introduces changes in material.

IBR-2 reactor in Dubna, Russia

irradiation parameters, expected for 11 days (one cycle) of reactor operation, were estimated:

- Maximal fluence of neutron with energy above 1 MeV when sample is installed at 40 mm apart from the moderator – 10¹⁸ n cm⁻², and for the distance 0.3 m-4·10¹⁷ n cm⁻².
- Maximal absorbed dose in water for the same installation positions: at 40 mm-100 MGy (10⁸ J/kg), at 0.3 m-40 MGy.

More details in :

M. Bulavin et.al. Irradiation facility at the IBR-2 reactor for investigation of material radiation hardness, NIM B 343 (2015) 26-29

Cables in radiation environment

Effect of radiation on cables

- Most critical parts of the cables are the insulation of the wire and the sheath around.
- Insulation must have certain dielectric properties and the sheath needs to fulfill additional mechanical requirements.
- Plastics and polymers loosing their flexibility and get brittle.
- Radiation tests are concentrating on that property.
- Most tests of cables are done with a Co60 source (Gamma) and with accelerated lifetime.

Radiation Resistance definition in IEC 60 544

- For flexible plastics and elastomers the most restrictive property is usually the strain or stress at break.
- End-point criterium for «radiation resistance value»: Loss of 50% of the initial strain or stress at break of the material.
- Note that this does not necessarily refer to an end-of-life condition, especially for materials with high initial strain at break (>200%) including TPU, ETFE, crosslinked or uncrosslinked polyolefins.

Test conditions in IEC 60544-4

EUROPEAN SPALLATION SOURCE

Type of material	Properties to be tested	Test procedures	End-point criteria ^a	
	Flexural strength	ISO 527	50 %	
	Elongation at break	ISO 37	50 %	
	Tensile strength at yield	ISO 527	50 %	
Flexible plastics	Tensile strength at break	ISO 527	50 %	
	Impact strength	ISO 179	50 %	
	Volume and surface resistivity	IEC 60093	10 %	
	Insulation resistance	IEC 60167	10 %	
	Electric strength	IEC 60243	50 %	
	Elongation at break	ISO 37	50 %	
	Tensile strength at break	ISO 37	50 %	
	Hardness/IRHD	ISO 48	Change of 10 units	
Electomore	Hardness/Shore A	ISO 868	Change of 10 units	
Elastomers	Compression set	ISO 815	50 %	
	Volume and surface resistivity	IEC 60093	10 %	
	Insulation resistance	IEC 60167	10 %	
	Electric strength	IEC 60243	50 %	

Test results for Huber Suhner RADOX 125

Radox 125 - Insulation

CERN Material C-1147; Date 1999

Dose Dose rate [kGy] [kGy/h]		Tensile Strength [MPa]	Elongation at break [%]	Hardness [Shore D]
0 0		17.7	212	46
200	1.2	18.3	191	48
520	0.8	18.6	140	50
1000	1	18.3	85	52
1000	240	17.8	83	48
3000	230	16.6	42	48

Radox 125 - Sheath

CERN Material C-619; Date 1989

Dose Dose rate [kGy] [kGy/h]		Tensile Strength [MPa]	Elongation at break [%]	Hardness [Shore D]
0		5.9	179	37
200	200 140		113	41
500 140		9.4	98	43
1000	140	10.5	75	46
5000	140	14	21	50

Test results for Eaton XLPO

EUROPEAN SPALLATION SOURCE

NEPO 73 – Eaton Dekoron Polyset XLPO 🔂 🚟

More details in the presentation:

Condition Based Qualification Robert Konnik, Chief Technology Officer, Marmon Innovation & Technology Group

Review of radiation tests Combination effects

- In particular, three of the aging assumptions used were found to be overly simplistic.
- Thermal aging was typically carried out at a few high temperatures, then they were modeled with an Arrhenius function to derive an Arrhenius activation energy Ea and finally the results were extrapolated to ambient conditions assuming no change in Ea. Recent studies show that Ea often drops at low temperatures, reducing the extrapolated lifetime.
- For radiation aging, an equal damage, equal dose assumption (e.g., no dose rate effects) was used. Careful studies have now shown that dose rate effects that reduce extrapolated material lifetime are both common and expected and come from several different mechanisms.
- Finally, for simulating combined radiation plus thermal environments, sequential aging (usually thermal aging followed by room temperature radiation aging) was allowed whereas recent studies show that simultaneous aging is usually much more severe.

More details in:

Kenneth T. Gillen and Robert Bernstein -Review of Nuclear Power Plant Safety Cable Aging Studies with Recommendations for Improved Approaches and for Future Work, SAND 2010-7266

EUROPEAN SPALLATION SOURCE

Compliance with safety class requirements has to be demonstrated for the entire expected lifetime of the reactor. Therefore testing must be done by accelerated ageing methods, representing the design lifetime of the NPP (now 60 years).

US suppliers for nuclear cables Environmental Qualification Data Base (EQDB)

Manufacturer	Insulation
Rockbestos Firewall III	XLPE
Brand-Rex	XLPE
Raychem Flametrol	XLPE
Anaconda Y Flame-Guard FR	EPR
Okonite FMR	EPR
Samuel Moore Dekoron	EPDM
BIW Bostrad 7E	EPR
Kerite HTK	~EPR

More details in this presentation: Leo Fifield, PhD (PNNL): LWRS Cable Aging and Cable NDE

EUROPEAN SPALLATION SOURCE

Certified cable IEEE-323, class 1E HABIA

EUROPEAN SPALLATION SOURCE

Habiatron Q

	Flame retardant: Smoke generation: Toxicity:	IEEE 1202-2006, IEC 60332-1-2 and UL 1581 VW-1 IEC 61034-2 IEC 60754-2	
•	Radiation tolerant:	2.3 x 10^6 Gy	
	Operational life:	Qualified for 60 years according to IEEE 383-2003 with a 90	PC

conductor temperature.

300V in submerged conditions at elevated conditions.

Designed for use in Class 1 safety systems such as primary pumps, safety valves, volume controls and emergency shut-down systems; Habiatron Q cables are independently qualified for an operational life of 60 years with a conductor temperature of up to +90°C and a jacket temperature of up to +70°C. Cables are rated to 600V in a dry post-LOCA environment and

HFI 260 / HFS 105 XL B, Class 1E multicore cables <600V 40 Years at +90°C

Construction

Conductor	Tin Plated Copper (TPC)			Dielectric	5	HFI 260 (PEEK)	Voltage (<1.0n Voltage (>1.0n	nm²) nm²) (300/500V AC Uo/U 500/1000V AC Uo/U
Screen	Optional Copper / Polyester foil (F) Optional Tin Plated Copper braid (T)			Sheath	Sheath HFS 105 XL B		Test voltage		3000V AC	
Colour code	Natural & numbe	Natural & numbered Sheath							Bla	ack
M/TPC 1.0 STQ 3	3x 1.00	1.20	1.84	4.0	4.2	5.8	68	13	44	700044363
M/TPC 2.5 STQ 3	3x 2.50	1.95	2.65	5.7	5.9	7.9	146	25	59	700044366
M/TPC 10 STQ 3	3x 10.00	3.93	4.83	10.4	10.6	13.2	506	68	99	700044369

Application

Description	Construction							Electrical	MBR	Article Number
	no. / size	conductor	insulation	cabled	shield/s	sheath/s	weight	amps at	fixed	
	CSA	Ø	Ø	Ø	Ø	Ø	g/m	40°C max	mm	

Certified cable RCC-E, class K1 Prysmian

DESCRIPTIF DU CABLE

TENSIONS ASSIGNEES / RATED VOLTAGES : 0,3 / 0,5 (0,6) kV Uo/U(Um) suivant / according to CEI 60038 & CEI 60183

AME / CONDUCTOR

- âme cuivre nu recuit, ronde, câblée, , classe 5,
- stranded, circular, plain annealed copper conductor, class 5, conforme à / according to CEI 60228 ; NF C 32-013 ; HD 383
- température / temperature
- 90°C en régime permanent / in continuous duty 250°C en court-circuit / in short circuit

ISOLATION / INSULATION CEI 60502

ruban séparateur facultatif / optional separator tape PR : couleur NOIRE / XLPE : BLACK colour

Repérage des conducteurs, voir page suivante / Cores identification, see next page

ASSEMBLAGE / LAYING UP

avec bourrage non hygroscopique ou ruban synthétique with non hygroscopic filler or synthetic tape

GAINE INTERNE / INNER SHEATH CEI 60502

Polyoléphine polyolephine

GAINE EXTERIEURE / OUTER SHEATH CEI 60502

Polyoléfine réticulé SH : couleur GRISE / LSOH Cross linked Polyolefine : GREY colour

EUROPEAN SPALLATION SOURCE

CABLE DESIGN

K1 LSOH RCC-E

CÂBLES de CONTRÔLE

CONTROL CABLES

CST 74 C 068 00 & CEI 60502-1 remplace / replaces HN 33-S-25 HN 32 S 01

CABLES POUR CENTRALES NUCLEAIRES

NUCLEAR POWER PLANT CABLES

QUALIFICATION : REP 900MWe 1300MWe N4 & EPR niveau B6000 level 1E Q1

AME CUIVRE ROUGE CLASSE 5 GAINE GRISE 0,3/0,5(0,6)kV PLAIN COPPER CLASS 5 CONDUCTOR GREY SHEATH 0,3/0,5(0,6)kV

Custom cable for ESS PSS systems **Huber Suhner**

EUROPEAN SPALLATION SOURCE

RADOX 125 BK ESS Multicore cables screened

Technical Data :

Conductor resistance at 20 °C	≤ 40.1Ω/km
Voltage rating U ₀ /U	450 / 750 V
Test voltage, 50 Hz, 1 min	2 500 V
Temperature range fixed Minimum temperature flexing Maximum conductor temperature at short circuit (max. 5s)	- 40 +125 °C - 25 °C + 280 °C
Min. bending radius fixed fixed flexing	4 x cable dia. 5 x cable dia.

The cables pass the following tests:

Fire protection in buildings	Fulfilled EN 50525
Vertical flame spread	50 < L s 540 mm EN 60332-1-2
Vertical flame spread, bunched	L ≤ 2.5 m EN 60332-3-24
Smoke density	T ≥ 60 % EN 61034-2
Corrosivity of combustion gases	pH ≥ 4.3, C ≤ 10 µS/mm EN 50267-2-2
Amount of halogen acid gas	HCI + HBr s 0.5.% EN 50267-2-1
Content of fluorine	HF s 0.1% EN 60684- 2, 45.2
Approach to	Def Stan 61- 12 Part 5

General composition of cable :

1.

2.

З.

4.

5.

6.

Colour : black

Cables in Radiation Environment Helukabel

EUROPEAN SPALLATION SOURCE

CE

TOPFLEX®-PUR

Part	No.cores x	Core	Core	Sheath	Outer Ø	Cop.	Weight	AWG-No.
no.	cross-sec.	marking	marking	colour	approx.mm	weight	approx.	
	mm ²	0.14 mm ²	0.5 mm ²			ka / km	ka/km	
			0,0			ng, nn	ag / and	

Technical data

 Temperature range flexing -30°C to +80°C fixed installation -40°C to +80°C

 Nominal voltage TOPFLEX[®]-PUR 350 V Tachofeedback-cable-C-PUR 450 V Incremental Feedback-cable-C-PUR 250 V

Test voltage

core/core 2000 V core/screen 1000 V

 Insulation resistance min. 20 MOhm x km

Minimum bending radius flexing 10x cable Ø fixed installation 5x cable Ø

 Coupling resistance max. 250 Ohm/km

Radiation resistance up to 100x10⁶ cJ/kg (up to 100 Mrad)

Cable structure

 Bare copper-conductor, to DIN VDE 0295 cl.6, extra fine-wire, BS 6360 cl.6, JEC 60228 cl.6

HELUKABEL TOPFLEX-PUR

- Core insualtion of PP
- Part No. 22847 Cu-screen of single pairs or single cores and PETP (polyethylene terephthalate) sheath
- Core identification see table below
- Single cores or pairs stranded in layer with optimal lay-length (pairs part no. 22818)
- Drain wire
- Tinned copper braided screen, approx. 85% coverage
- Outer sheath of special PUR, matt
- Sneath colour see table below

Properties

Special PUR outer sheath low adhesion

Resistant to

Oils and fats Acids and alkalis Hydraulic fluids Oxygen and ozone UV-radiation Hydrolysis Microbial attack Water and weathering effects

- The high abrasion resistance and notch resistance meet the highest requirements
- The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers

Note

 For extreme applications extending beyond standard colutions we recommand that

Cables for aircraft and space applications ASNE0261CF – Drake, Nexans

- Some cables according to ASN-E026x (Airbus) and other aircraft specs are composed of Polyimide (Kapton) isolations
- ASNE0261CF cable is used by LTN for a CERNapplication resolver specified to 40 MGy

EUROPEAN

SPALLATION

Example of customised cable Axon

- Rad hard cables for ITER
 - Temperature : 4K to 200°C
 - Ultra high vacuum
 - Rad : 50 MGy (high energy neutrons + gamma)
 - Expected life span : 30 years
 - Maintenance : impossible
 - Voltage up to 30kV

Cables in Radiation Environment Air (standard atmosphere)

EUROPEAN SPALLATION SOURCE

Some typical numbers from suppliers:	
Lapp-Kabel (PU)	0.5 MGy
Lapp-Kabel (EPR)	1 MGy
Helukabel (PU, HM2, TM7)	1 MGy
Huber+Suhner RADOX [®] (RX125-XLPolyolefin Copolyme	r) 1 - 3 MGy
Marmon (XLPE + CSPE, certified to Class 1E, IEEE-323)	2 MGy
Habiatron (XLPolyolefin, certified IEEE-323 + 383)	2.3 MGy
Axon (Poliax [®] -PEI)	3 MGy
Huber+Suhner RADOX® (TPU)	5 MGy
Axon (Neutrax [®] -PEEK)	5 MGy
Axon (Kapton [®] -Polyimide)	10 - 20 MGy

Lessons Learned

- 1. Understanding the material mix of the component is key; not always easy to get from the supplier and absolutely crucial for the activation analysis.
- 2. Best way of avoiding problems in high radiation environment is to avoid optics and electronics as materials.
- 3. In the last time quite a number of high performance plastics emerged in the market (PEEK, PEI, PPS, PPA, TPU) to accompany PI (Kapton) as isolation in radiation environment.
- 4. Nuclear qualified components are often too expensive as they cover more requirements than necessary (safety, temperature, shock, water level).
- 5. Often suppliers offer cheaper "brothers" of the nuclear components with similar properties in terms of radiation hardness (examples of this in Kristinas talk on Wednesday).
- 6. Some suppliers give dose numbers "for free" with their standard products.
- 7. For very high doses you need to take a customized solution from a specialized supplier.
- 8. Using standard components with a "promising" material mix requires tests campaigns under carefully chosen conditions.

Thank You!

EUROPEAN SPALLATION SOURCE

How to find radiation hard components?

Additional slides

thomas.gahl@esss.se

DENIM 2018, PSI, Switzerland 18th September 2018

Use of cables and wires exposed to ionising radiation

Ionising radiation normally only occurs in defined applications and when it is supposed to, meaning that materials with the appropriate resistance can be specially adapted to the prevalent conditions of the application in advance.

Cables are therefore normally only tested for radiation resistance if their intended usage includes exposure to ionising radiation. This means that for all other cables, indications can only be made for the radiation resistance of typically used materials. While these indications are not representative of the resistance of the whole cable, the values can still act as a rough guide and make it possible to compare the cables with one another.

The radiation resistance of materials is defined using the Radiation Index (RI) in IEC 60544-4 and refers to the point at which the elongation at break is reduced to \geq 50% of the original value.

	PRIMARY INSULATION AND JACKETING									
MATERIALS POLI/	POLIAX™	NEUTRAX™ PAEK BASED	TAPED POLYIMIDE	TPI POLYIMIDE	ASC3-921 TPO BASED	ASC3-55J TPO BASED	AXOTHERM® SILICONE BASED	TPUE850HV0 TPU BASED	EVALUATION CRITERIA	
OPERATING TEMPERATURE	+130°C	+200°C +250°C	+250°C	+240°C	+70°C	+70°C	+180°C	+125°C		
FLAME RETARDANT	YES	YES	YES	YES	YES	YES	YES	YES		
SMOKE EMISSION	Dm = 283 VOF4 = 30	Dm = 20 VOF4 = 1			Dm = 200 VOF4 = 8	Dm = 248 VOF4 = 64	Dm = 74 V0F4 = 85	Dm =253 VOF4 = 512	Dm <300 V0F4 < 100	
TOXICITY OF GAS EMISSION	ITC = 10				ITC = 4	ITC = 3	ITC = 1.6	ITC = 32	ITC < 10	
CORROSIVITY OF FUMES	pH = 7.1				pH = 7.85	pH = 5.2	pH = 4.7	pH = 8.9	pH > 4.5	
TENSILE STRENGTH AT BREAK (MPa)	30	100	170	90	14	13	6.5	35	-	
ELONGATION AT BREAK (%)	100	30 - 100	120	90	230	150	220	600		
RESISTANCE TO OIL	VERY GOOD	EXCELLENT	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	AVERAGE	GOOD		
RADIATION RESISTANCE (Mrad)	300 - 600	500 - 1000	1000 - 5000	2000 - 7000	50 - 100	50 - 100	50 - 100	100 - 200	IEC 60544	

EUROPEAN SPALLATIO

SOURCE

Cables in Radiation Environment - AXON

Radiation resistance, temperature resistance and Halogen free, LSZH behaviour

	RADIATION RES	ISTANCE (*)	TEMPERATURE	HALOGEN EREE
	IN STANDARD ATMOSPHERE IN INERT ATMOSPHERE		RATING (°C)	LSZH
TPI - EXTRUDED POLYIMIDE	2000 Mrad (20 MGy)	7000 Mrad (70 MGy)	240	YES
TAPED POLYIMIDE	1000 Mrad (10 MGy)	5000 Mrad (50 MGy)	250	YES
NEUTRAX™ (PAEK BASED)	500 Mrad (5 MGy)	1000 Mrad (10 MGy)	240	YES
POLIAX TM	300 Mrad (3 MGy)	600 Mrad (6 MGy)	135	YES
TPU - THERMOPLASTIC ELASTOMER	100 Mrad (1 MGy)	200 Mrad (2 MGy)	125	YES
PE/PO and XLPE/XLPO based	50 Mrad (500 kGy)	100 Mrad (1 MGy)	100	YES
ETFE	10 Mrad (100 kGy)	300 Mrad (3 MGy)	155	NO

*limits based on IEC 60544 - worst case scenarios (gamma + low dose rate) and end-point criteria (-50% strain or stress at break).

These values can only serve as a general guideline; exact nature of materials (chemical structure, molecular weight, presence and nature of additives) and environmental conditions such as temperature, humidity and dose rate influence the radiation behaviour of materials.

Cables in Radiation Environment - RADOX

			hermoplastics Crosslinked materials						
Ab	breviation 1)	LSFH	TPU	CR	RX 125A	RX 125M	RX 125TM	REMS	REMS FH
CE	NELEC type		TMPU	EM2					
Mechanical characterist	ics								
Tensile strenght	N/mm ²	≥ 9.0	≥25	≥ 10	≥ 10	≥9	≥ 10	≥ 15	≥ 10
Elongation at break	%	≥ 125	≥ 300	≥ 300	≥ 125	≥ 125	≥ 125	≥ 300	≥ 125
Abrasion resistance		good	very good	good	good	good	good	good	good
Flexibility (2)		satisf.	satisf.	very good	satisf.	good	good	good	good
Electrial characteristics			-						
Volume resistivity at 20 °C	C Ωcm	1013	1012	1010	1014	1012	1012	1012	10'2
Dielectric constant at 1 kH	łz	5	7	8	4.8	6	5	4.8	5.5
Fire characteristics						1	1		1
Flame retardant		yes	no	yes	yes	yes	yes	yes	yes
Halogen free		yes	yes	no	yes	yes	yes	no	yes
Corrosive combustion gas	ses	no	no	yes	no	no	no	yes	no
Smoke generation		low	average	stark	low	low	low	stark	low
Resistance to						-	-		
lonizing radiation	kGy	1000	5000	500	1000	1000	1000	1000	1000

41

More details

Radiation Resistance of Plastics and Elastomers

Tadao Seguchi, Yosuke Morita

Database Title

Published Online: 15 APR 2003

DOI: 10.1002/0471532053.bra047

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Wiley Database of Polymer Properties

Additional Information (Hide All)

How to Cite Author Information Publication History

How to Cite

Seguchi, T. and Morita, Y. 2003. Radiation Resistance of Plastics and Elastomers. Wiley Database of Polymer Properties. .

Author Information

Japan Atomic Energy Research Institute (JAERI), Takasaki Radiation Chemistry Research Establishment, Takasaki, Gunma, Japan

Publication History

Published Online: 15 APR 2003

More details

EUROPEAN SPALLATION SOURCE

CERN 89-12 Technical Inspection and Safety Commission 31 December 1989

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPILATION OF RADIATION DAMAGE TEST DATA

PART I, 2nd EDITION: Halogen-free cable-insulating materials

> INDEX DES RÉSULTATS D'ESSAIS DE RADIORÉSISTANCE

l" PARTIE, 2^e ÉDITION: Matériaux d'isolation de câbles exempts d'halogène

H. Schönbacher and M. Tavlet

CENEVA 1989 Tavlet, M. and Ilie, S.

"Compilation of Radiation Damage Test Data PART I: Halogen-free cableinsulating materials" CERN, Geneva, 2nd Edition 1989

Radiation resistance of polymers – Publication NASA (1969)

EUROPEAN SPALLATION SOURCE

Phenolic, glass laminate Phenolic, asbestos filled Phenolic, unfilled Epoxy, aromatic-type curing agent Polyurethane Polyester, glass filled Polyester, mineral filled Diallyl Phthalate, mineral filled Polyester, unfilled Mylar Silicone, glass filled Silicone, mineral filled Silicone, unfilled Melamine - formaldehyde Urea-formaldehyde Aniline-formaldehyde Polystyrene Acrylonitrile/butadiene/styrene (ABS) Polyimide Polyvinyl chloride Polyethylene Polyvinyl formal Polyvinylidene chloride Polycarbonate Kel-F Polytrifluorochloroethylene Polyvinyl butyral Cellulose acetate Polymethyl methacrylate Polyamide Vinyl chlo 'de-acetate Teflon (TF.) Teflon (FEP) Natural rubber Styrene-butadiene (SBR) Neoprene rubber Silicone rubber Polypropylene Polyvinylidene fluoride (Kynar 400)

VIIIII
V////////
V111111
11111111
VIIIIIIII
200000
VIIIIIIIIII ·
9222
Villininini
VIIIIIII
V///////

from:

C. L. Hanks and D. J. Hamman, "Report on the Effect of Radiation on Electrical Insulating Materials", NASA, 1969

> as reference in ESS-0039408 "NOSG Handbook"

CERN 1982-10 – Cable insulation

 10^{4}

 10^{3}

105

106

107

108

EUROPEAN SPALLATION SOURCE

Polyimide (Kapton)	
Polyurethane rubber (PUR)	
Ethylene-propylene rubber (EPR/EPDM)	
Polyethylene/Polyolefin (e.g. PE/PP, XLPE)	
Chlorosulfonated polyethylene (Hypalon)	
Ethylene-chlorotrifluoroethylene (Halar)	
Ethylene-propylene rubber (EPDM) flame ret. (Pyrofil)	
Ethylene-tetrafluoroethylene copolymer (Tefzel)	
Ethylene vinyl acetate (EVA)	
Polychloroprene rubber (Neoprene)	
Polyethylene terephthalate copolymer (Hytrel)	
Polyolefin, flame-retardant (Flamtrol, Radox)	
Polyvinylchloride (PVC)	
Silicone rubber (SIR)	
Butyl rubber	
Perfluoroethylene-propylene (FEP)	
Polytetrafluoroethylene (Teflon PTFE)	
USEFUL RANGE	

DOSE IN GRAY

https://radiationdamage.web.cern.ch/cont ent/radiation-damage

CERN 1982-10 – Elastomers

EUROPEAN SPALLATION SOURCE

https://radiationdamage.web.cern.ch/cont ent/radiation-damage

Gamma dose, Gy

CERN 1989-12 – Overview

EUROPEAN SPALLATION SOURCE

DOSE IN GRAY
Polytetrafluoroethylene (PTFE)
Perfluoroethylene-propylene (FEP)
Butyle rubber
Silicone rubber (SIR)
Acrylic rubber (EAR.EEA)
Polyethylene/Polyolefin (e.g. PE/PP,PO)
Acrylonitrile rubber
Chlorosulfonated polyethylene
Polyvinylchloride (PVC)
Ethylene vinyl acetate (EVA)
Polychloroprene rubber
Cross-linked polyolefins
Polyethylene terephthalate copolymers
Styrene-butadiene rubber (SBR)
Ethylene-propylene rubber (EPR/EPDM)
Polyurethane rubber (PUR)
PEEK
Polyimide

DOSE IN RAD

[V/////
YZ	/////
V////	77
V////	//.
V/////	77
V////	
V////	
V////	
V////	
V////	
V//////	
10^{5} 10^{6} 10^{7} 10^{8}	¹⁰ ¹⁰ ¹⁰

https://radiationdamage.web.cern.ch/cont ent/radiation-damage

Utility	
Nearly always usable	
Often satisfactory	
Not recommended	
	Utility Nearly always usable Often satisfactory Not recommended

Radiation resistance of polymers – Publication CERN (1999)

Dose limits in air

	S
Polyarylate (Isaryl) films 101	MGy
PEEK (amorphous) films and wire insulation 3 !	MGy
PETP (Mylar) films 0.5 !	MGy

Specially formulated aromatic epoxy composites	300 MGy
Cyanate ester resins	300 MGy
Poly-ether-imide (PEI) resins	50 MGy
PEI as wire insulation (Siltem)	3 MGy
Specially formulated EPR/EPDM insulated cables	2 MGy
Specially formulated EVA insulated cables	0.5 MGy
Usual polyolefin insulated cables	0.1 MGy
Polyimide (Kapton H) films and wire insulation	50 MGy

Materials

PEEK (amorphous) films and wire insulation	3 MGy
PETP (Mylar) films	0.5 MGy
Polypropylene films	30 kGy
Polyamide 66 (Nylon) hoses or pieces	300 kGy
Acetal resins (POM) (Delrin) hoses or pieces	30 kGy
FEP insulated wires	30 kGy
PTFE insulated wires	1 kGv

from:

M. Tavlet and S. Ilie, "Behaviour of Organic Materials in Radiation Environment", IEEE 2000 EUROPEAN SPALLATIO SOURCE

Radiation resistance of polymers – Presentation ORNL (2013)

- Current materials utilized in instrument and power cable in nuclear reactors
 - » PEEK
 - » EPR
 - » CSPE
 - » SiR
 - » XLPE/XLPO
- Base dielectric materials of interest
 - » PVA, XLPVA
 - » PE, XLPE » PI
- Duckworth, R., "Radiation Resistant Electrical Insulation Materials for Nuclear Reactors Using Novel Nanocomposite Dielectrics ", DOE-ORNL 2013

Ionizing Dose

EUROPEAN SPALLATION SOURCE

RADIATION RESISTANCE

Radiation resistance of polymers – AXON

EUROPEAN SPALLATION SOURCE

Radiation resistance of polymers – AXON (2014)

EUROPEAN SPALLATION SOURCE

Radiation resistance

	INSULATION RADIATION RESISTANCE	TEMPERATURE	HALOGEN FREE LSZH (*)
POLYIMIDE	5x10 ⁹ RADS	-50°C / +400°C	YES
NEUTRAX	1x10 ⁹ RADS	-50°C / +200°C	YES
POLYURETHANE	1x10 ⁹ RADS	-40°C / +125°C	YES
XLPE	2x10 ⁸ RADS	-40°C / +125°C	YES
POLIAX	1x10 ⁸ RADS	-40°C / +130°C	YES
ETFE	5x10 ⁷ RADS	-90°C / +155°C	-

52

Radiation resistance of polymers - LAPP

Resistance of plastics to ionising radiation

Material- type	Radiation resistance in Gy approx.	Radiation resistance in rad approx
PVC	8 x 10 ^s	8 x 10'
PE LD	1 x 10 ⁵	1 x 10 ⁷
PE HD	7 x 10 ⁴	7 x 10 ⁶
VPE (XLPE)	1 x 10 ⁵	1 x 10 ⁷
PA	1 x 10 ⁵	1 x 10 ⁷
PP	1 x 10 ³	1 x 10 ⁵
PETP	1 x 10 ⁷	1 x 10 ⁷
PUR	5 x 10 ⁵	5 x 10 ⁷
TPE-E	1 x 10 ⁵	1 x 10 ⁷
TPE-O	1 x 10 ⁵	1 x 10 ⁷
NR	8 x 10 ⁵	8 x 10 ⁷
SIR	2 x 10 ⁵	2 x 10 ⁷
EPR	1 x 10 ⁶	1 x 10 ⁸
EVA	1 x 10 ⁵	1 x 10 ⁷
CR	2 x 10 ⁵	2 x 10 ⁷
ETFE	1 x 10 ⁵	1 x 10 ⁷
FEP	3 x 10 ³	3 x 10 ⁵
PFA	1 x 10 ³	1 x 10 ⁵
PTFE	1 x 10 ³	1 x 10 ⁵

53

Radiation resistance of polymers - LAPP

Resistance of plastics to ionising radiation

Material- type	Radiation resistance in Gy approx.	Radiation resistance in rad approx
PVC	8 x 10 ⁵	8 x 10 ⁷
PE LD	1 x 10 ⁵	1 x 10 ⁷
PE HD	7 x 104	7 x 10 ⁶
VPE (XLPE)	1 x 10 ⁵	1 x 10 ⁷
PA	1 x 10 ⁵	1 x 10 ⁷
PP	1 × 10 ³	1 x 10 ⁵
РЕТР	VC 0.8 MGy	1 x 10 ⁷
PUR	U 0.5 MGv	5 x 10 ⁷
TPE-E	R (Nat Rubber) 0.8 MGy	1 x 10 ⁷
TPE-O	$PR(\sim FPDM) = 1.0 MGV$	1 x 10 ⁷
NR		8 x 10 ⁷
SIR	2 x 10 ⁵	2 x 10 ⁷
EPR	1 x 10 ⁶	1 x 10 ^a
EVA	1 x 10 ⁵	1 x 10 ⁷
CR	2 x 10 ⁵	2 x 10 ⁷
ETFE	1 x 10 ⁵	1 x 10 ⁷
FEP	3 x 10 ³	3 x 10 ⁵
PFA	1 x 10 ³	1 x 10 ⁵
PTFE	1 x 10 ³	1 x 10 ⁵

Radiation resistance of polymers - LEMO

Note: technical data in this chapter provide general information on plastics used by LEMO as electrical insulators. LEMO reserves the right to propose new materials with better technical characteristics, and to withdraw, without notice, any material mentioned in the present catalogue or any other publications edited by LEMO S.A. and/or its subsidiaries. LEMO SA and its subsidiaries use only plastic granules, powder or bars supplied by specialized companies, and thus cannot in any case take responsibility with regard to this material.

Radiation resistance of vacuum cables - VACOM

Description VACOM ordercode	Enameled solid wire KAP-LACK-D	Film-wrapped solid wire KAP-BAND-D	Film-wrapped stranded wire KAP-BAND-L
Conductor material	Copper (bare)	Copper (silver-plated)	
Insulation	Polyimide (Kapton®) enamel	Polyimide (Kapton®) film	
Temperature resistance	-269 °C to 260 °C *, (short-term to 350 °C **)	-75 °C to 200 °C *, (short-term to 250 °C **)	
Radiation resistance	107 Gy (109 Rad)	10 ⁵ Gy (10 ⁷ Rad)	
Dielectric strength	2 kV DC	1 kV DC	
Range of application	min. 1 · 10 ¹⁰ mbar (possibly bakeout required)	min. 1 · 10 ¹⁰ mbar (possibly bakeout required)	
Recommended connections	Clamp connection	Clamp/Solder/Crimp	connection

More cables available on request, e. g. flat ribbon cable, coaxial cable, high voltage cable.

Higher resistance of the "enameled" wire is probably due to the fact that it is applied on solid wire and intended for fixed installations, i.e. it works also with a slightly damaged isolation.

IS23 - IEC 544

EUROPEAN SPALLATION SOURCE

Concerning the resistance to radiations, the requirements for all types of cables are the following:

-Retention of functional capabilities up to the specified Radiation Index (up to an integrated radiation dose of 5 ×10 5 Gy for general purpose cables and 10 7 Gy for special radiation resistant cables).

Requested by cable Technical Specifications:

Example of radiation damages.

EUROPEAN SPALLATION SOURCE

Not irradiated

10⁷ Gy

In the SPS tunnel:

EUROPEAN SPALLATION SOURCE

Classification of materials according to their radiation resistance.

(Comp. of radiation damage test data : M. Talvet - H. Schönbacher - 1989)

From 1990 to 1996, cables sample have been irradiated in situ in LSS6. Mechanical tests have been done by TIS.

Conclusion:

- For the SPS cables irradiated about 0.1 MGy, the inner insulations were falling apart. The degradation of the sheath was less pronounced.