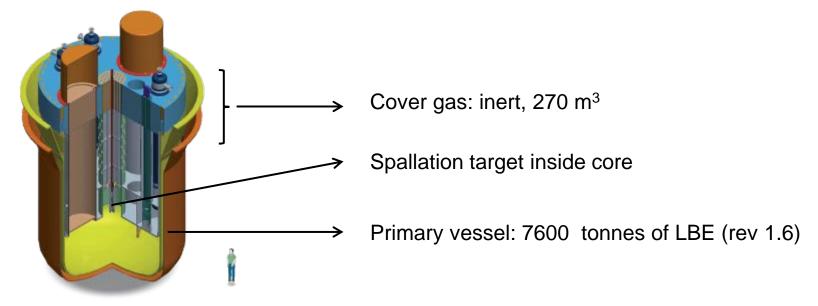
Current Understanding of Polonium Evaporation from Irradiated Lead-Bismuth Eutectic (LBE)

Borja Gonzalez Prieto, Alessandro Marino, Jun Lim, Kris Rosseel and Alexander Aerts


alexander.aerts@sckcen.be

• MYRRHA

- Accellerator driven system: subcritical 100 MW reactor coupled to 600 MeV, max. 4 mA proton accelerator
- Lead bismuth eutectic: coolant and spallation target (45% Pb, 55%Bi, T_m=125°C)

LBE coolant chemistry R&D at SCK-CEN

Chemistry and conditioning programme (2010-):
 R&D for licensing and engineering MYRRHA

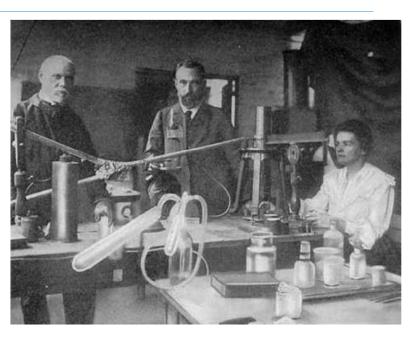
Activities:

- Control and measurement of dissolved oxygen in LBE
- Impurity (cold) trapping and precipitates filtering
- Evaporation and capture of volatile hazardous radionuclides
 - Activation products: polonium
 - Spallation products: mercury, osmium, thallium, polonium ...
 - Fission products: iodine, ruthenium, tellurium,

Infrastructure: large LBE loops CRAFT & MEXICO, HELIOS3 gas conditioning system, Lilliputter loop, HLM lab, Po lab

Alessandro Marino's

talk


Radiochemical properties of polonium-210

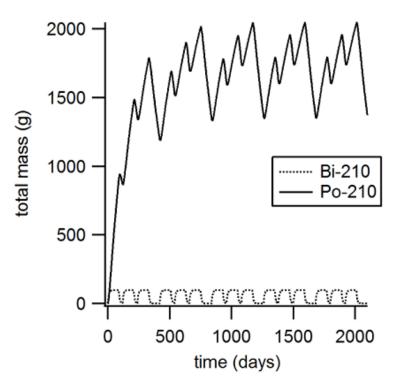
- Po-210 is "pure" alpha emitter
- *t*_{1/2}=138 days,
 - high specific activity: 166 TBq/g
- Hazard: inhalation or ingestion
- LD ~ GBq or µg

14	15	16	17	18
				2
				1.1

				Helium 4.002602
6 2 C Carbon 12.0107	7 25 N Nitrogen 14.0067	8 2 0 0 0 0 0 0 5,9994	9 27 F Fluorine 18.9984032	10 ² / ₈ Ne ^{Neon} 20.1797
14 28 Si Silicon 28.0855	15 2 P Phosphorus 30.973762	16 28 5 Sulfur 32.085	17 2 CI Chlorine 35.453	18 28 Ar Argon 39.948
32 Ge ¹⁸ ¹⁸ ⁴ 72.84	33 ² Ass ¹⁸ Arsenic 74.92160	34 28 See 6 Selenium 78.96	35 2 Br ¹⁸ ⁷ Bromine 79.904	36 28 Kr Krypton 83.798
50 28 Sn 18 18 18 18 18 18 18 18 18 18	51 2 Sb 18 18 18 18 18 5 Antimony 121.780	52 2 Te 18 18 18 18 18 18 18 6 Tellurium 127.60	53 2 8 18 18 7 Iodine 128.90447	54 28 Xe 18 Xenon 131.293
82 2 Pb 32 18 Lead 4 207.2	83 2 Bi 18 Bismuth 5 208.98040	84 Polonium (208.9824)	85 2 At 18 Astatine 7 (209.9871)	86 2 Rn 18 Radon 2 18 18 8 (222.0178)
114 Uuq Unuquadum (289) 28 20 20 28 20 20 20 20 20 20 20 20 20 20	115 Uup Unurpentum (288) ² ¹⁵ ³² ¹⁵	116 Uuh Ununhexium (292) 28 18 32 18 32 18 32 18 32 18 32 29 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 32 20 18 18 32 20 18 18 18 18 18 18 18 18 18 18	117 Uus Urunseptum	118 Uuo Ununoctium (294) 2 8 18 322 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 32 18 3 18 3 18 3 18 3 18 3 18 3 18 3 18 3 18 18 18 18 18 18 18 18 18 18

Polonium formation in MYRRHA

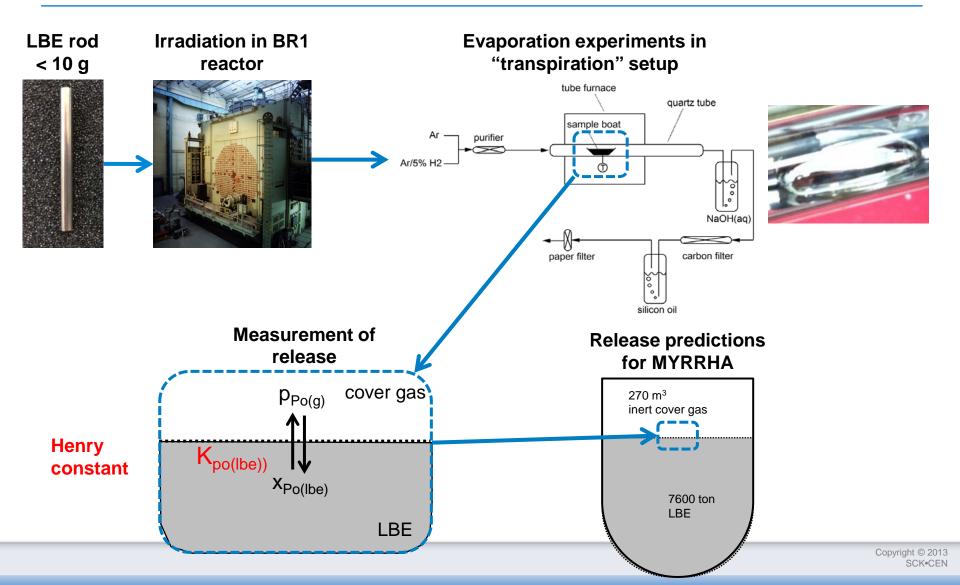
Main formation mechanism: neutron capture on stable Bi in LBE

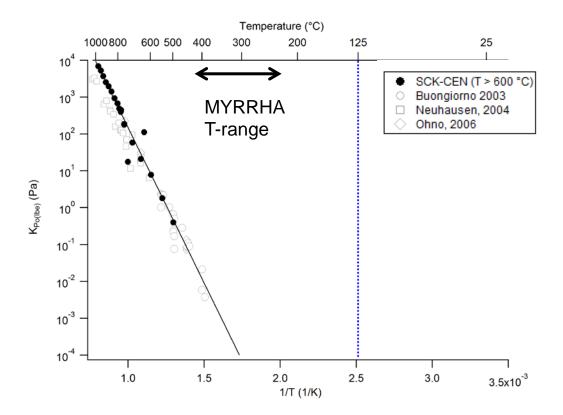

$$^{209}\text{Bi} \xrightarrow{(n,\gamma)}{}^{210}\text{Bi} \xrightarrow{\beta-}{t_{1/2=5.01d}}^{210}\text{Po} \xrightarrow{\alpha}{t_{1/2=138d}}^{206}\text{Pb}$$

At steady-state:

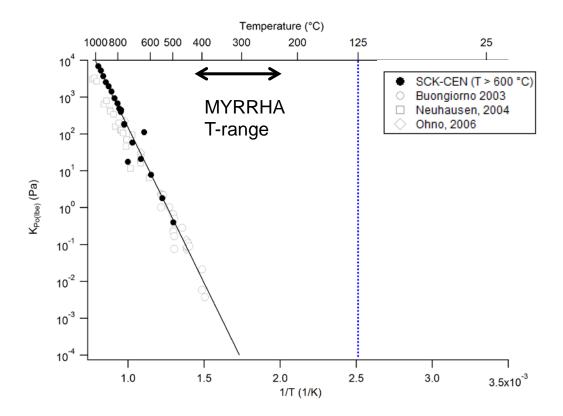
- Mass of Po-210:
 2000 g Po-210 in 7600 ton
 - Concentration of Po-210:

 $x_{Po(LBE)} \approx 10^{-7}$


 + small amount of Po < 210 due to spallation


Not much is known about the volatility of Po

- Po poses no direct hazard when dissolved in LBE
- But when Po evaporates, it is easily transported: contamination, potentially large radiological impact of accidents
- => Good understanding of release mechanisms required
- 2010: limited available data at high temperature suggested good retention of Po in LBE
- => choice was made to leave Po in LBE in MYRRHA (no extraction technology development)
- There exist many "indications" of very volatile Po molecules, but almost no systematic studies relevant for MYRRHA conditions
- => Po evaporation programme at SCK•CEN in collaboration with PSI (experiments) and Ugent (quantum mechanical calculations)


Measurement of Po evaporation from LBE

 First experimental campaign: Equilibrium (Henry) constants for evaporation at different T >600°C

 First experimental campaign: Equilibrium (Henry) constants for evaporation at different T>600°C

 \Rightarrow Single correlation for the *T* dependence of the Henry constant \Rightarrow Good agreement with literature data

- Equilibrium (Henry) constants for evaporation
- \Rightarrow Single correlation for the *T* dependence of the Henry constant

- Equilibrium (Henry) constants for evaporation
- \Rightarrow Single correlation for the *T* dependence of the Henry constant

Additional experiments revealed:

- Evaporation in $Ar/\%H_2 \approx Ar \approx Ar/2\%H_2O$
- \Rightarrow No large influence cover gas composition on Po release

- Equilibrium (Henry) constants for evaporation
- \Rightarrow Single correlation for the *T* dependence of the Henry constant

Additional experiments revealed:

- Evaporation in $Ar/\%H_2 \approx Ar \approx Ar/2\%H_2O$
- \Rightarrow No large influence cover gas composition on Po release

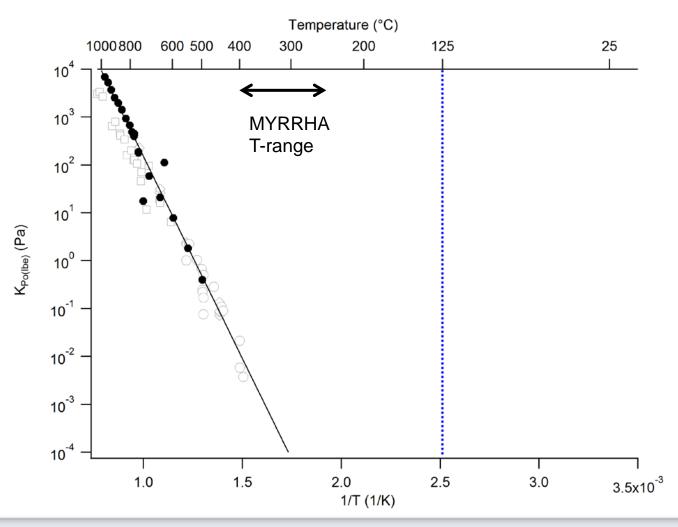
• Evaporation at different cover gas flow rates

⇒ Confirmed equilibrium conditions + measured maximal evaporation rate

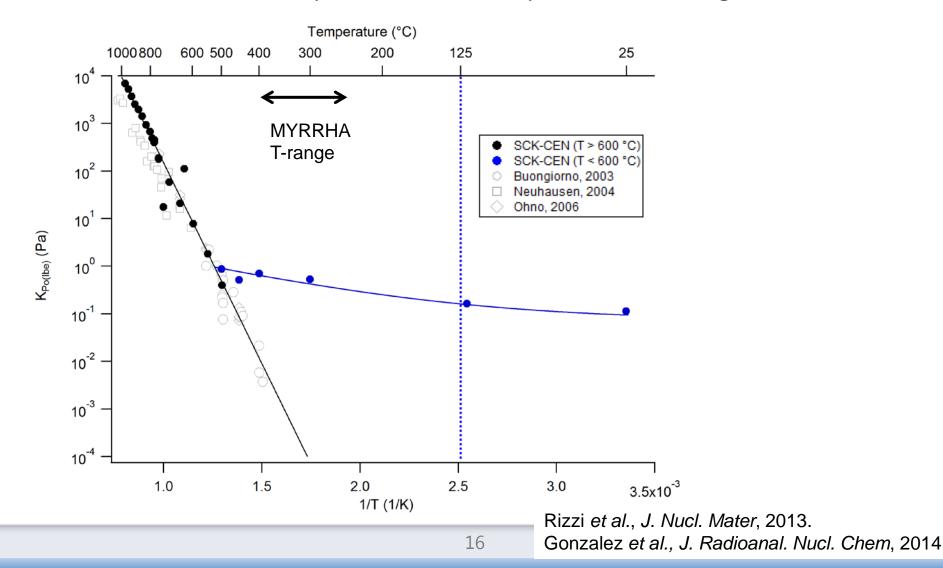
- Equilibrium (Henry) constants for evaporation
- \Rightarrow Single correlation for the *T* dependence of the Henry constant

Additional experiments revealed:

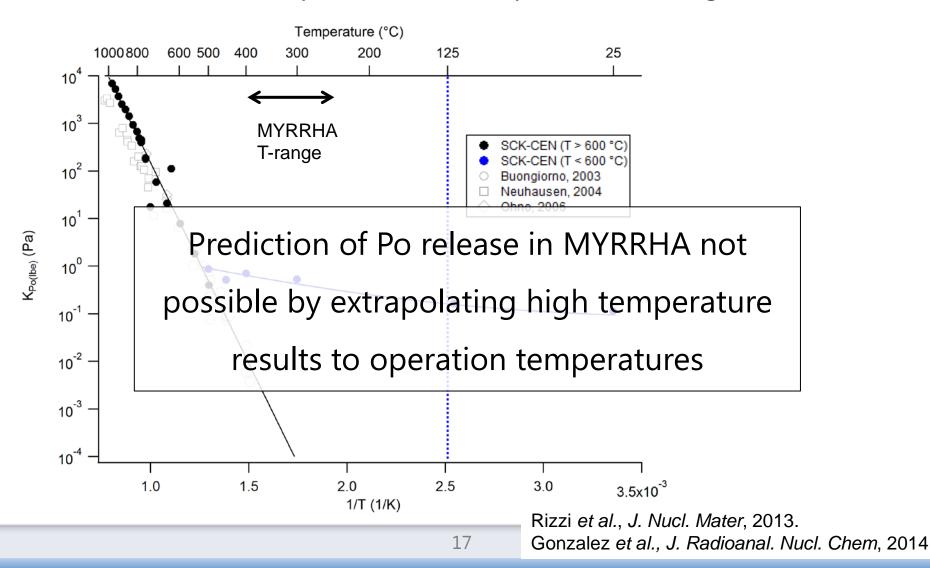
- Evaporation in Ar/% $H_2 \approx$ Ar \approx Ar/2% H_2O
- \Rightarrow No large influence cover gas composition on Po release
- Evaporation at different cover gas flow rates
 Confirmed equilibrium conditions + measured maximal evaporation rate
- Time dependent Po evaporation experiments
- \Rightarrow Consistent with model predictions
- ⇒ Simulations indicate diffusion of polonium in LBE is not limiting evaporation rate


Gonzalez et al. JNM 2013, 450, 299. Gonzalez et al. RCA 2014, in press.

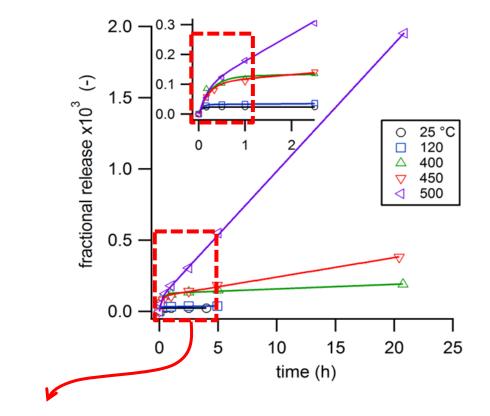
• Equilibrium (Henry) constants for evaporation in $Ar/5\%H_2$ \Rightarrow Single correlation for the *T* dependence of the Henry constant


• Evaporation in $Ar/5\%H_2 \approx Ar \approx Ar/2\%H_2O$ $\Rightarrow No large At high temperature polonium evaporation$

 from LBE seems to be well understood and is
 Evaporation at different cover gas flow rates predictable
 > Identified evaporation equilibrium conditions + maximal evaporation rate

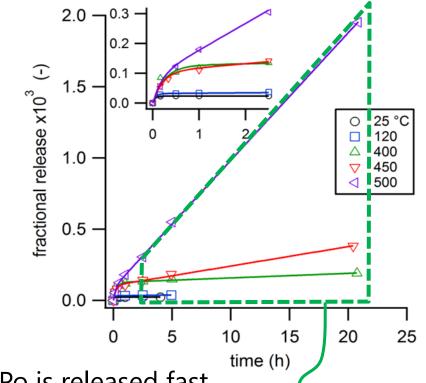

Time dependent Po evaporation experiments
 Predicted by model
 Simulations show diffusion of polonium
 in LBE is not limiting evaporation rate

Much more Po evaporation than expected from high-T behavior



Much more Po evaporation than expected from high-T behavior

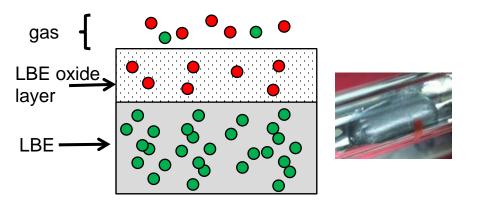
Polonium evaporation at low temperature: Insight from time-dependent evaporation experiments


- Fractional release of Po from LBE versus time at T<500 °C
- From results at high T: linear time-dependence expected

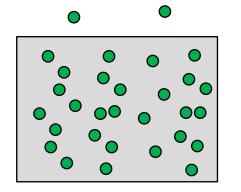
At low T, fraction of Po is released unexpectedly fast

Polonium evaporation at low temperature: Insight from time-dependent evaporation experiments

- Fractional release of Po from LBE versus time at T<400 °C
- From results at high T: linear time-dependence expected


- Fraction of Po is released fast
- Other Po fraction evaporates more slowly according to hightemperature behavior

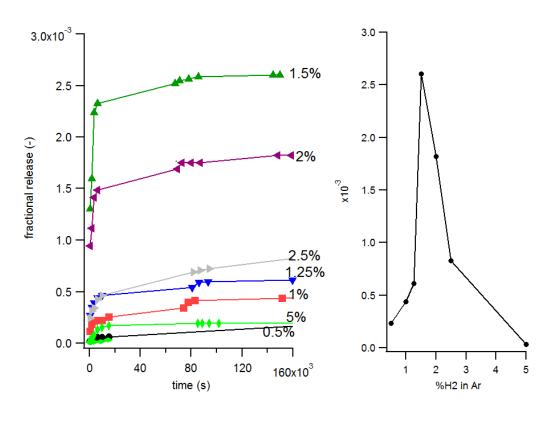
Polonium evaporation at low temperature: Properties of "fast-released" Po


Further experiments indicated that "fast-released" polonium

- is enriched at free surface of LBE; slow-released Po in bulk of LBE
- is incorporated in **oxide layer** on top of LBE

Oxygen saturated LBE Fast Po release in Ar 5%H₂

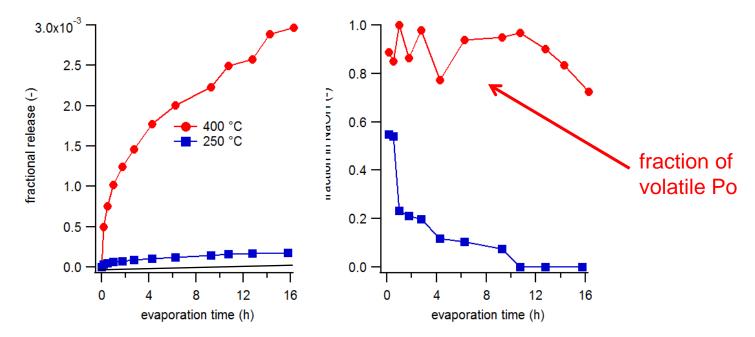
Oxygen undersaturated LBE No fast Po release in Ar/5%H₂



⇒ evaporation strongly dependent on oxygen content LBE

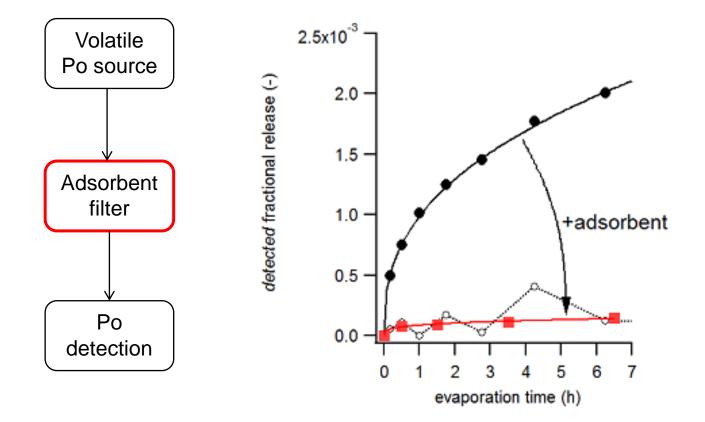
• evaporation and **speciation** strongly dependent on composition cover gas

Polonium evaporation at low temperature: Polonium release vs hydrogen content cover gas


- Carrier gas: 0-5%H₂ in Ar, evaporation at 400 °C
- Po/LBE samples without initial (visible) oxide layer: fast-released Po formed in situ

- Complex dependence on H₂ content cover gas
- Up to 1000 times more evaporation than expected from high temp data
 - In H₂: evaporated species not very volatile: condense at ~300 °C vapor species possibly (Po(g), BiPo(g) or PbPo(g)
- Important for LBE oxygen reduction system using H₂ gas

Polonium evaporation at low temperature: Po release in presence of water vapor


- Water ingress in LBE due to leak/rupture secondary circuit
- Po-release with time:

- High Po evaporation at 400 °C
- Very volatile Po species, easily transported at room temperature PSI results: possibly Po(OH)_x, PoO(OH)₂
- Potentially large radiological impact: design changes + filter development

First exploratory capture studies of volatile Po

Experiments without and with activated carbon bed between source and detection

Activated carbon efficient adsorbent for volatile Po

Conclusions

- At high T Po evaporation from LBE seems to be well understood and not very sensitive to cover gas composition; based on our experiments we have developed models that allow reasonably accurate predictions of polonium release
- At low T polonium evaporation is much more complex. A fraction of the dissolved polonium is released much faster than expected from high temperature behavior. The magnitude of its release and the volatility of the evaporated Po molecules are controlled in a complex way by
 - dissolved oxygen concentration in LBE or other HLM
 - composition of the cover gas
- When water vapor comes in contact with LBE, large quantities of very volatile polonium molecules may be released
- More R&D needed to understand physical chemistry
- MYRRHA: conservative design change to double walled HX to significantly reduce water ingress probability

Acknowledgements

• Funding:

- Belgian Government: MYRRHA project
- European Commission: FP7-SEARCH
- Radwaste Analytics group @ PSI: Jörg Neuhausen, Emilio Maugeri, Stephan Heinitz