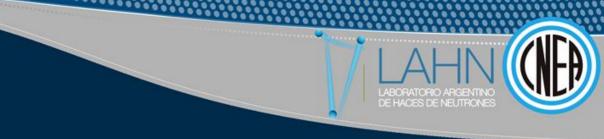
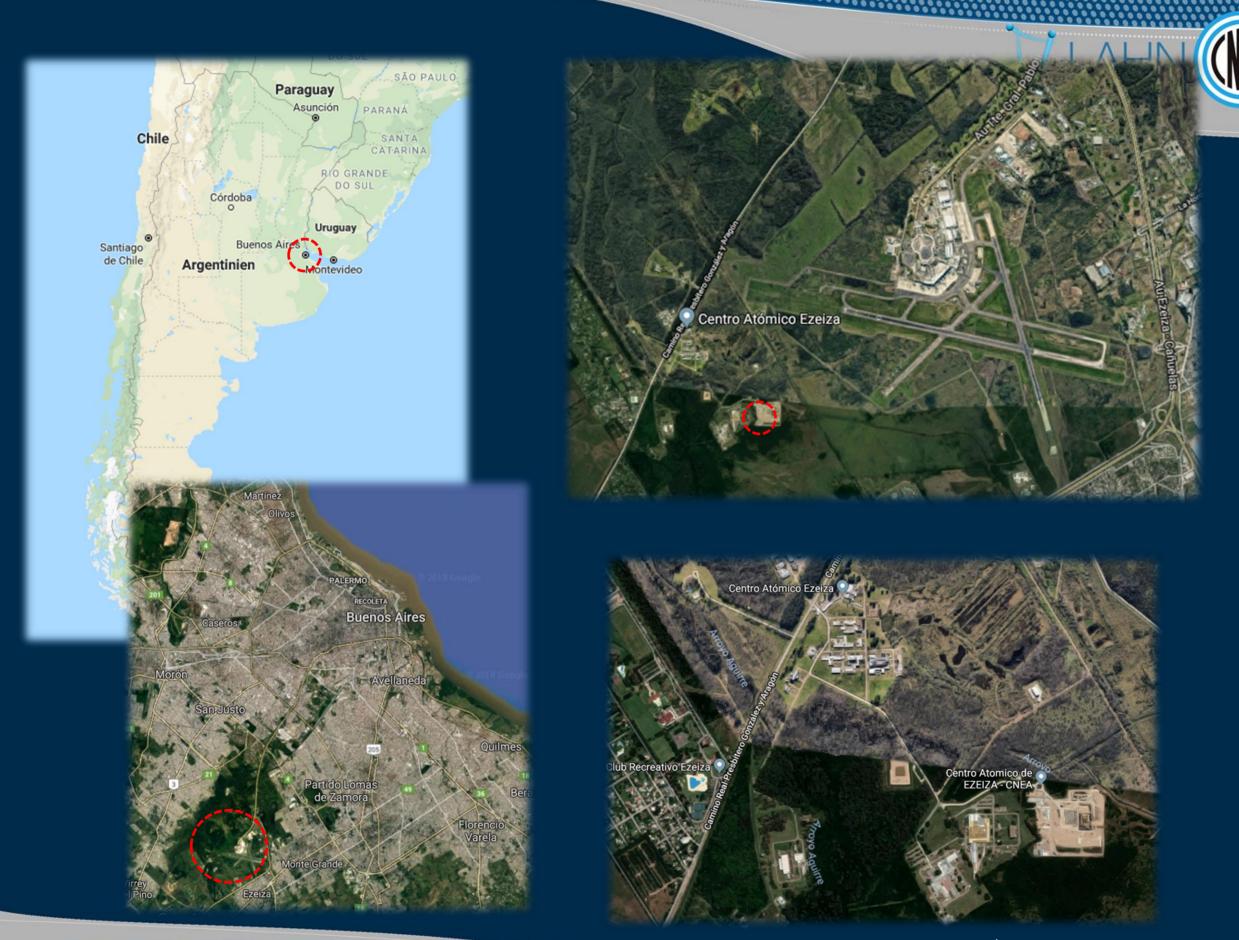


The design of ASTOR: A cold neutron imaging instrument for the future argentine multipurpose reactor, RA-10


Aureliano Tartaglione

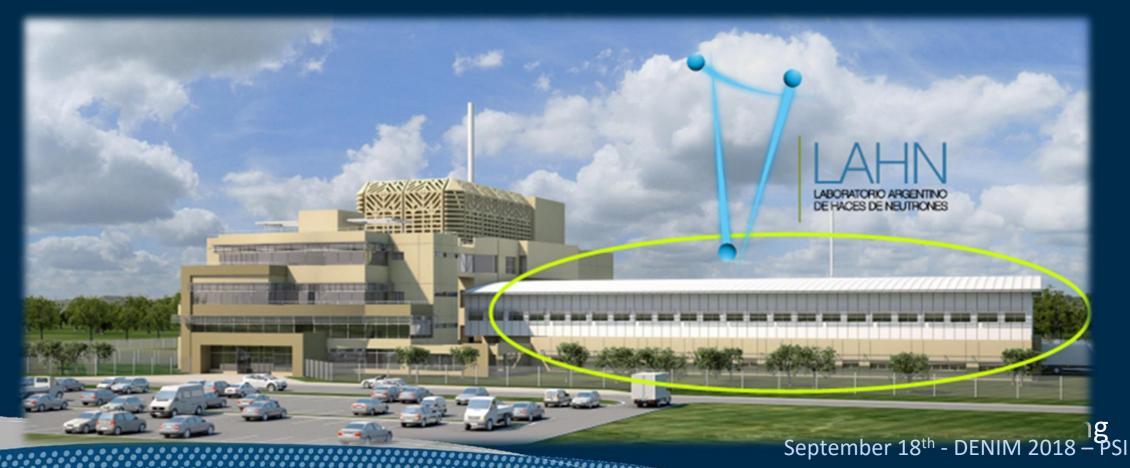
CONICET-CNEA-GAIYANN LAHN responsible for ASTOR


Summary

- The reactor RA-10 and the LAHN
- ASTOR and applications for Argentina
- ASTOR conceptual design
- ASTOR preliminary mechanical design
- Open questions!

Geographical location of RA-10 and ASTOR

......................



RA-10 and LAHN

The RA-10 Reactor

LABORATORIO ARGENTINO DE HACES DE NEUTRONES

- **30 MW** multi-purpose **open pool** reactor.
- LEU + H₂O (moderation and cooling) + D₂O reflector
- Located at Ezeiza Atomic Center (close to Buenos Aires International Airport)
- Owned by CNEA. Designed by CNEA and INVAP
- Construction started in March 2016. First neutrons expected by march 2020/2021

The RA-10 Reactor construction

The RA-10 Reactor goals

- LABORATORIO ARGENTINO DE HACES DE NEUTRONES
- To provide a replacement for the RA-3 reactor (1967)
- To increase the RadioIsotope (RI) production for supporting the local and regional future demand.
- To consolidate the national capabilities related to nuclear fuel production.
- To offer new capabilities based on neutron techniques to the scientific and technological systems.
 - to develop thermal and cold neutrons facilities for the application of neutron scattering and imaging techniques to nuclear technology, as well as basic and applied sciences

The RA-10 Reactor goals

- LAHN LABORATORIO ARGENTINO DE HACES DE NEUTRONES
- To provide a replacement for the RA-3 reactor (1967)
- To increase the Radiolsotope (RI) production for supporting the local and regional future demand.
- To consolidate the national capabilities related to nuclear fuel production.
- To offer new capabilities based on neutron techniques to the scientific and techniques is based on neutron techniques to the application of neutron scattering and imaging techniques to nuclear technology, as well as basic and applied sciences

LAHN: Argentinean Laboratory of Neutron Beams

- LAHN will be the first and unique large-scale neutron beams facility in Latinamerica
- It will complement perfectly with the novel 4th generation synchrotron SIRIUS in Campinas, Brazil
- Together they may become the most multidisciplinary hub in the region; similar to ILL+ESRF in France, J-Parc in Japan, PSI in Switzerland, ISIS+Diamond in UK, MAX-IV + ESS in Sweden, Argonne in USA.

De la mano del avence constante del Proyecto RU-13 en la Comteldo Nacional de Grangia Juticitos, está en marcha el Proyecto gata el deello y ejecución de un Laboratorio Jugentino de Hacep de Nacionae guid-Nij con el objeto de complin con uno de los propúblicos del Reactor RU-13, provem haceo de nacionae têrmicos y fritos para epicaciones en ciencia y tecnología.

ne Laboratorio esta siendo proyectado en el espírito de las Tamadas "Srandes Intrakisciones Experimentales", es debit, como In adocesorio estera y postes de un conjunto de intercontence de Otima generación que gentra espicar las caquadades hadas por el Reactor y que proves a la contunidad demitico-escudigida, a la industría y por espuesto, e la Contrala que recisión de regis Judicios de estátican ingrano par el estado de materiales enteraís confinances, piscar Industrial de Industria y adocesor par el Reactor y que proves a la contunidad demitico-escudigida, a la industría y por espuesto, a la Contrale de estátican ingrano par el Reactor y que proves a la contunidad de interación de las terrativas enterán confinanceso, piscar Industriales adocesor par estático ingrano par el estado

SI STRANDORR

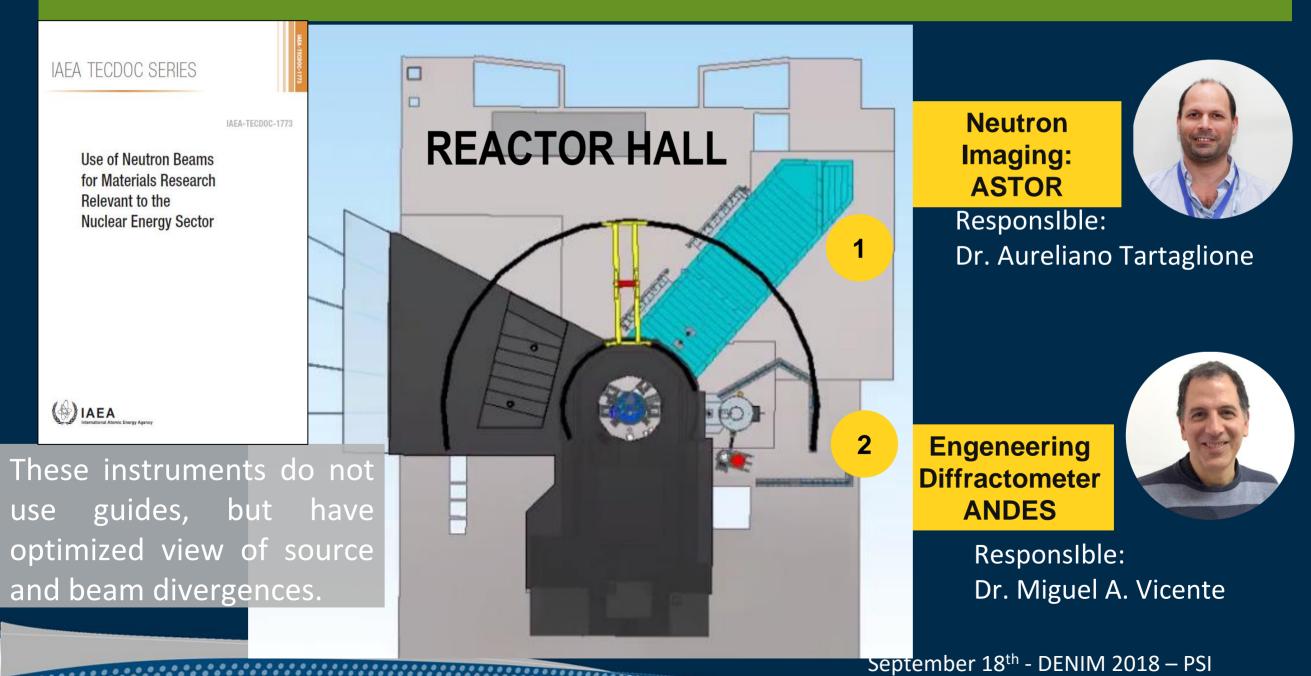
Balid al Bolath de More

to 2012, a descerts

caracteristicas. En los palese eventados, el grado de contribución de estas téoriosa el desarrollo científico y teorológico en una variadad de sampas demusars la verbución el adhumo e invendiones malitadas. La investigación con Tárohoras insuretinas revites caracteristicas de lo que as conce como Elig Salence, y que ga sur verglanda se regularen insulacionas muy aspacificas, como un resente musicar de investigación, par par su corregisjáció y cares no estel el a lacance de costa los páticas internans las partes nazores la cogranistica de contrar con estas facilitadas en logententa, y convertir el Laboración de Maced de Neurones en una interalación de classe mundial y líde en Lacincamérica, ofiniciando a toda nuestre comunidad la posititidad de der un gran asto costitorio en eux capacitades experimentales.

Neurtinices constituyen hor en die une noderses herramiente, en muchos cesos insustituible nor sus alcences y

loss. Nimecos: v muches ones anticaciones



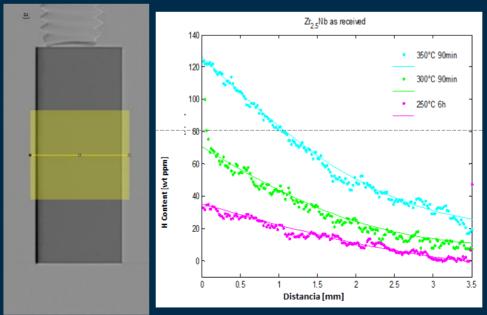
WWW.lahn.cnea.gov.ar September 18th - DENIM 2018 – PSI

PHASE I OF INSTRUMENTATION

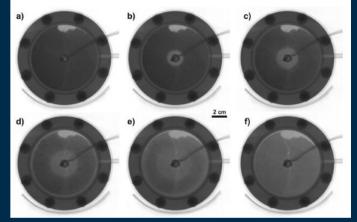
LAHN LABORATORIO ARGENTINO DE HACES DE NEUTRONES

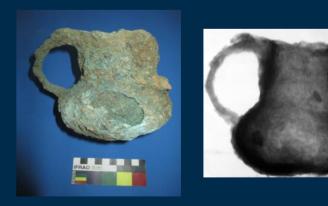
THESE INSTRUMENTS WERE SELECTED FOR BEING THE MOST SUITED FOR NUCLEAR INDUSTRY APPLICATIONS (specific needs of the CNEA)

Advanced System for TOmography and Radiography

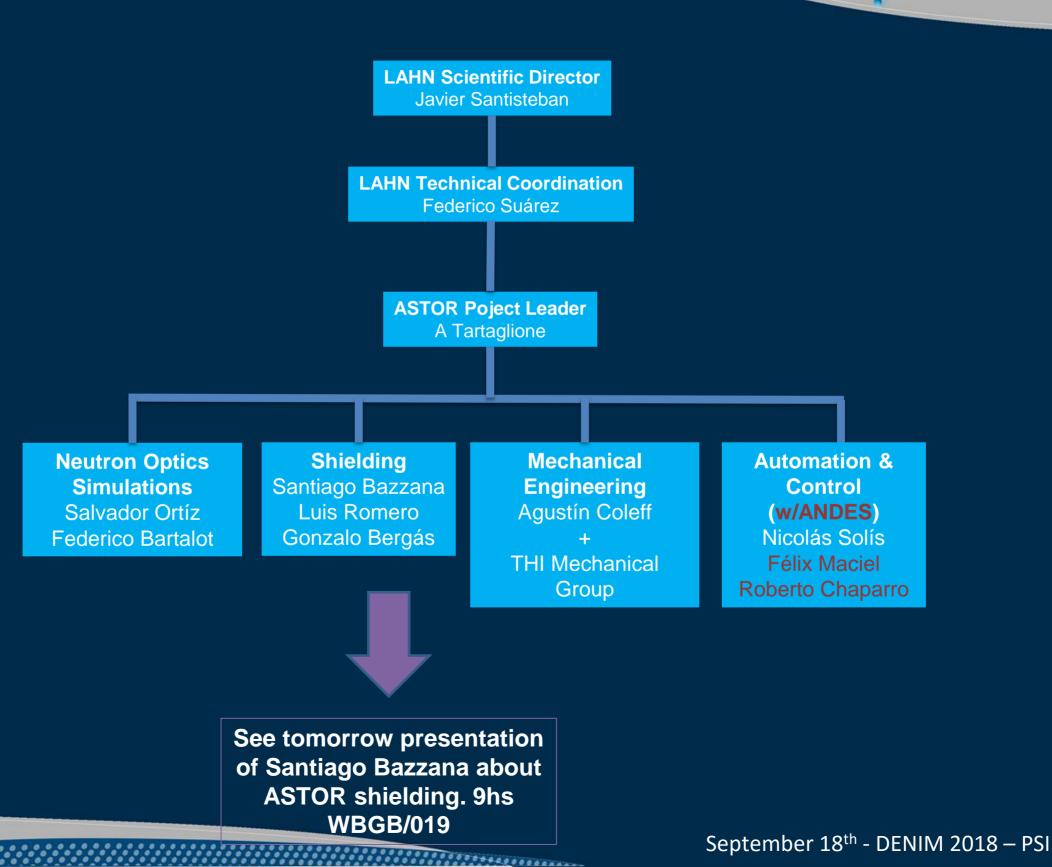

Advanced System for TOmography and Radiography ASTOR and applications for Argentina

- Nuclear Industry
- Material Science research
- Lithium technology
- Hydrogen technology
- Fuell cells
- Palaentology
- Cultural Heritage





Santisteban J, Buitrago L, Tartaglione A, Daymond M, Grosse M (2015)


00000000000000000

Baruj, et al, Intl J Hydrogen Energy (2015)

ASTOR Team

High Level Scientific Requirements

	Imaging Technique		Description	Type of sample & technical requirements		
	(i)	High spatial resolution imaging	White beam 2D imaging with highly collimated beam	 Small or medium size objects. Precise rotation/translation of object. 		
	(ii)	High temporal resolution imaging	White beam 2D imaging with intermediate/low spatial resolution	 Small or medium size objects In-situ/In-Operando neutron imaging. Dynamic processes. Sample environment equipment. 		
Day 1	(iii)	Tomography	Sequence of images at different angles between 0° and 180°	 Small or medium size objects. Precise rotation/translation of objects. 		
Upgrades	(iv)	Bragg edge imaging	Monochromatic neutron beam imaging. Texture analysis	 Small or medium size objects Mechanical and/or double crystal monochromator. Precise rotation/translation of objects. 		
	(v)	Dark field imaging (DFI) and neutron grating interferometry (nGI)	Imaging in USANS of micrometer size particles. Imaging of magnetic domains.	 Small samples. Neutron grating positioning equipment. Monochromatic beam. ~10% lambda resolution. 		
	(vi)	Polarized neutron imaging	Neutron imaging of magnetic domains and magnetic fields.	 Small samples. Neutron polarization equipment: two polarizer, magnet. Monochromatic beam. Minimum 10% lambda resolution. 		

Performance requirements

Imaging technique		Sample flux (n/cm ² s)	FOV (cm²)	Wavelenght (Å)	Spatial resolution (µm)
(i)	High spatial resolution imaging	≥ 2 10 ⁶	10x10 a 25x25	Policromatc	10 a 40
(ii)	High temporal resolution imaging	≥ 1 10 ⁸	10x10 a 20x20	Policromatic	50 a 200
(iii)	Tomography	≥ 1 10 ⁷	10x10 a 20x20	Policromatic	10 a 200
(iv)	Bragg edge neutron imaging	≥ 1 10 ⁶	10x10 a 20x20	2.0 Å ≤ λ ≤ 6 Å (1%≤Δλ/λ≤ 10%)	50 a 200
(v)	Dark field and neutron grating interferometry	≥ 1 10 ⁶	10x10 a 20x20	2.0 Å ≤ λ ≤ 6 Å (Δλ/λ = 10%)	50 a 200
(vi)	Polarizad neutron imaging	≥ 1 10 ⁶	10x10 a 20x20	2.0 Å ≤ λ ≤ 6 Å (Δλ/λ = 10%)	50 a 200

Instrument development strategies

- First-stage instruments design should be straightforward, based on well-proven technologies.
- Each instrument has an external Scientific and Technical Advisory Panel of international experts.
- Timely planning and coordination with RA-10 Project.
- Instrument design and development should exploit and enhance existing resources within CNEA.
- This should consolidate a technical team able to develop future instruments.

Instrument development strategies

Dr Pavol Mikula

Nuclear Physics Institute, Academy of Sciences of the Czech Republic

Science in Novel & Extreme Conditions

b

F

Dr Javier Campo

nstituto de Ciencia de Materiales de Aragón, España

•Dr Michael Hofmann

Heinz Maier-Leibnitz Center Technische Universität München, Germany

ASTOR

•Dr Eberhard Lehmann

Paul Scherrer Institut Switzerland

cal

rd,

•Dr Mohammed Arif/ Dr. Daniel Hussay

National Institute of Standards and Technology (NIST) USA.

•Dr Burkhard Schillinger

Heinz Maier-Leibnitz Center Technische Universität München, Germany

ор

nd

Mechanical Development strategies

1 – TO SPLIT THE DEVICE IN SISTEMS, SUBSISTEMS AND COMPONENTS

- 2 TO IDENTIFY THE OPERATIONAL MODES
- 3 TO CLASSIFY THE COMPONENTES IN 3 CATEGORIES
 - CLASS 1 HIGH PRIORITY TO DEVELOP
 - CLASS 2 MEDIUM PRIORITY
 - CLASS 3 LOW PRIORITY
- 4 AGREE WITH THE SCIENTIFICS ALL THE MECHANICAL OBJECTIVE

REQUIREMENTS

- 5 TO GET DECISION OVER EACH COMPONENTE ¿PURCHASE OR DEVELOP?
- 6 TO KEEP THE DESIGN AS SIMPLE AS POSSIBLE

COMPONENT THAT WILL BE DESIGNEDIN CNEA UNIQUE AND AD-HOC COMPONENT EXAMPLE :SHIELDINGS, COLLIMATORS, BEAM STOP, CAMERA BOX, DOUBLE CRYSTAL MONOCROMATOR.

COMPONENT THAT ARE HAS BEEN PURCHASE COMMERCIAL COMPONENTS EXAMPLE: SAMPLE TABLE POSITIONS WITH HIGH AQURATE SPECIFIC COMPONENTE WITH SPECIFIC KNOW HOW EXAMPLE: VELOCITY SELECTOR

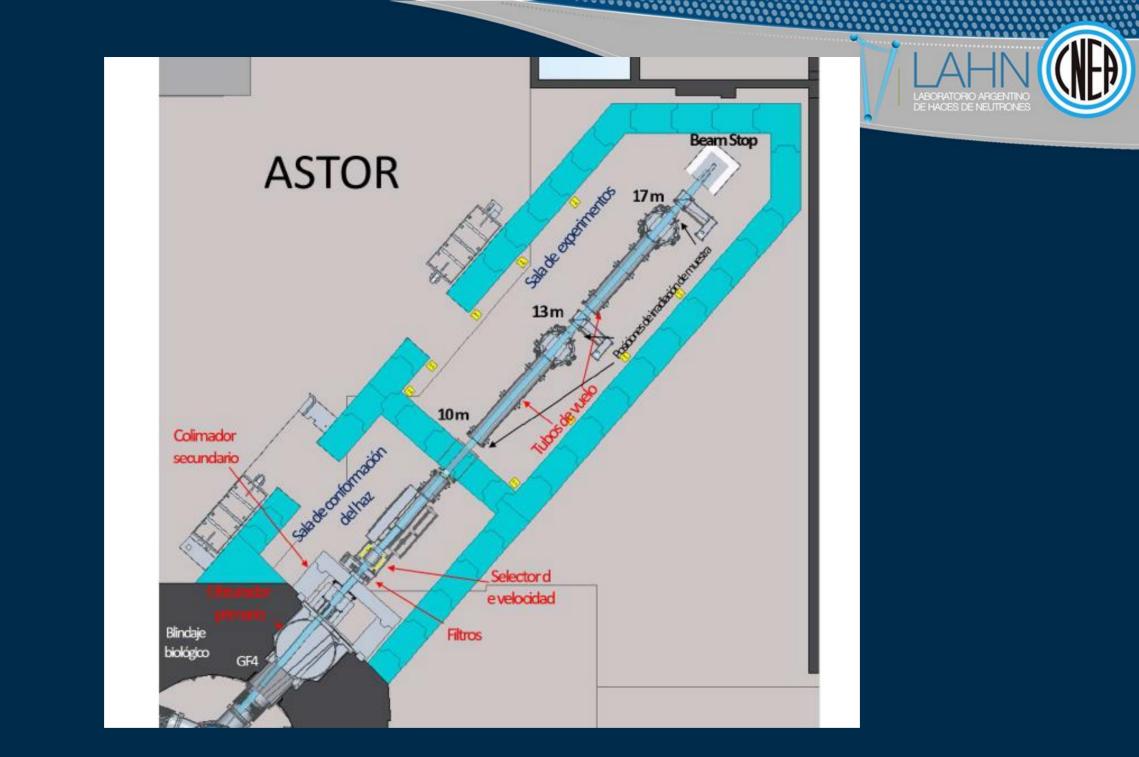
Mechanical Development strategies

1 – TO SPLIT THE DEVICE IN SISTEMS, SUBSISTEMS AND COMPONENTS

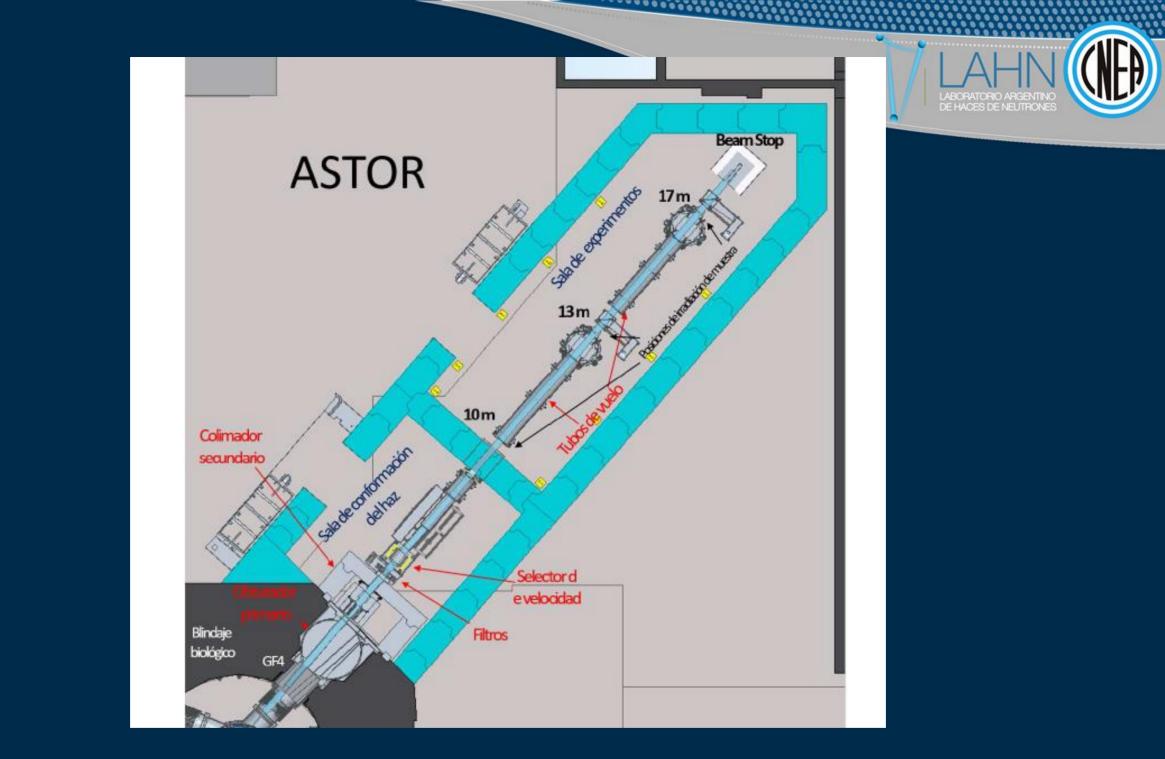
- 2 TO IDENTIFY THE OPERATIONAL MODES
- 3 TO CLASSIFY THE COMPONENTES IN 3 CATEGORIES
 - CLASS 1 HIGH PRIORITY TO DEVELOP
 - CLASS 2 MEDIUM PRIORITY
 - CLASS 3 LOW PRIORITY
- 4 AGREE WITH THE SCIENTIFICS ALL THE MECHANICAL OBJECTIVE

REQUIREMENTS

- 5 TO GET DECISION OVER EACH COMPONENTE ¿PURCHASE OR DEVELOP?
- 6 TO KEEP THE DESIGN AS SIMPLE AS POSSIBLE

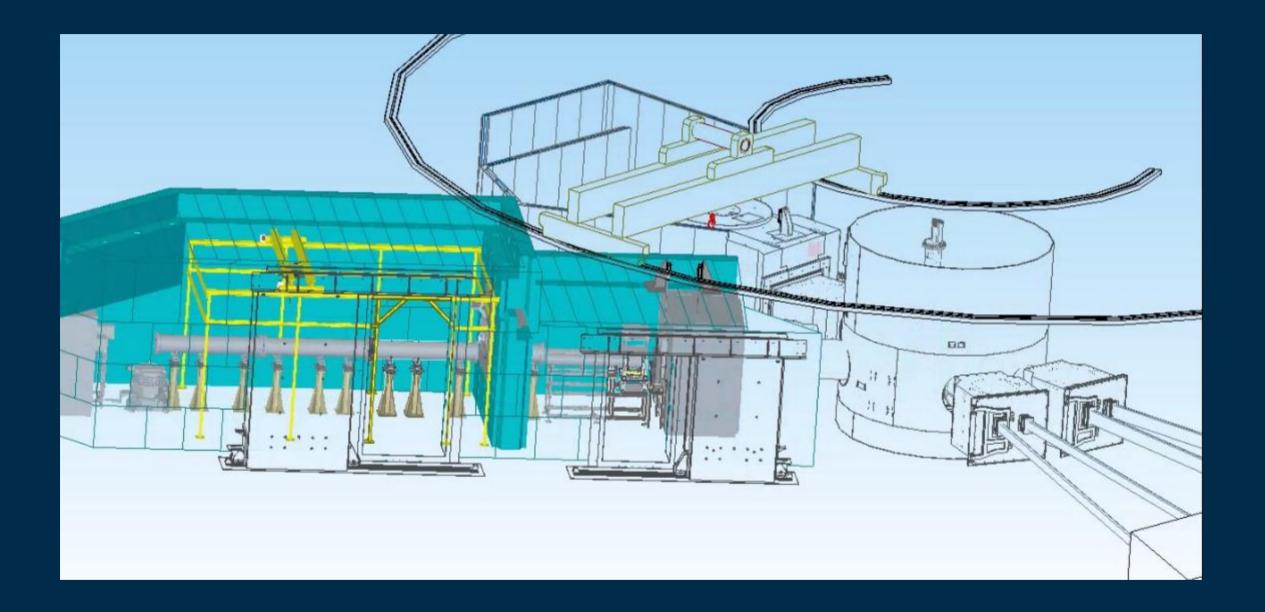

COMPONENT THAT WILL BE DESIGNEDIN CNEA UNIQUE AND AD-HOC COMPONENT EXAMPLE :SHIELDINGS, COLLIMATORS, BEAM STOP, CAMERA BOX, DOUBLE CRYSTAL MONOCROMATOR.

COMPONENT THAT ARE HAS BEEN PURCHASE COMMERCIAL COMPONENTS EXAMPLE: SAMPLE TABLE POSITIONS WITH HIGH AQURATE SPECIFIC COMPONENTE WITH SPECIFIC KNOW HOW EXAMPLE: VELOCITY SELECTOR


THE CHALLENGE: ACHIEVE ALL THIS STEPS WITH A STRONG AND GOOD COMUNICATION BETWEEN ALL THE TEAM MEMBERS (SCIENTISTS AND ENGINEERS)

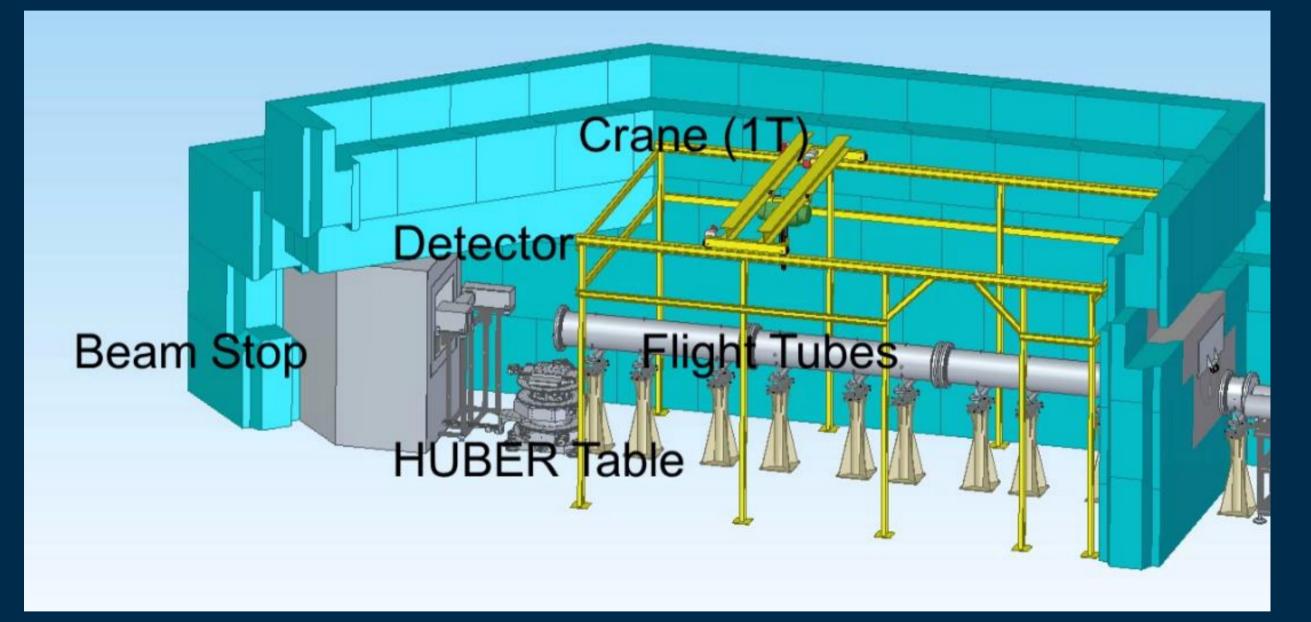
ASTOR main layout

- Exclusive cold neutron extraction conduct.
- Two independent rooms: Conformation and experimental.
- Experimental room with 3.5m internal height and ~ 4m width.
- Conformation room with 2.5m internal height and ~ 4m width.



- Three standard irradiation positions at 10m, 13m and 17m from neutron source.
- Primary collimator in-pile (beam adjusted). Secondary collimation drum out-of-pile with six available positions. Secondary shutter. Fast shutter. Filters drum. Mechanical velocity selector. DCM. TOF.

- The L/D (at 17 m) can be: ~230, 450, 800, 1500, 6000x500 (high resolution slit), 1100 x 230 (high flux slit).
- The L/D=800 option is duplicated. Can be with or without beryllium filter.
- Maximum available neutron flux: ~4 10^8 n/cm^2s (at 10m with L/D~120 & FOV ~10 cm x 10 cm).
- Maximum available FOV: ~30 cm x 30 cm (at 17m with L/D~1500 & neutron flux~2,4 10^6 n/cm^2s)



Experiments Room Conformation Room

ASTOR OPERATIVE MODES

Mode	Primary shutter	Secondary shutter	Fast shutter	Electronics and mechanical	Conformation room door	Experimental room door	Responsible
E01. OFF	Close	Close	Close	Off	Open/Close	Open/Close	R
E02. Maintenance	Close	•	-	Off	Open/Close	Open/Close	R-M
E03.Setup	Close	Close	Close	On	Open/Close	Open/Close	R-M
E04. Sample change	Open	Close	Close	On	Close	Open	R-U
E05. Operation	Open	Open	Open	On	Close	Close	R-U

ASTOR MAIN COMPONENTS

	CONFIGURACIÓN DE COMPONENTES				
Sub Sistema		Componente	2Manual o Actuada?	¿Remota o	Mode
o do o troute	01	Obturador primacio	Actuada	Lecal? Remota	Operativo? E04,E05
01	02	Colinador Primario	Actuada		
	01	Filtro neutrones rápidos (zafiro)			E04,E06
02	62	Colinador secundario	Actuada		E03,E05
	02	Obtarador secundario	Actuada		E03,E05
	01	Ottarador sipido	Actuada		E04,E05
	02	Calenta de filtros			E04,E05
	03	Selector de velocidad (Mecánico)	Actuada		E03,E05
	04	Goniômetro para interferometria nGi#1	Actuada		EOS
04	05	Monocromador de doble cristal (Selector de velocidad pasivo)	Actuada		E03,E05
04	05	Chopper	Actuada		E03,E05
		Tubo de vuelo y ventanas de tubos de vuelo de sala de conformación de haz	Actuada		E05
	07	l'uoo de vuelo y ventanas de tuoos de vaelo de sala de conformación de naz Limitador de haz XY de sala de conformación de haz	Manual Actuada		EOS
	09	L'initiador de Baz pacivo			E03,E05
	02	Limitador de har XY de sala de experimentos	A definir		E03
05	03	Tubo/s de vuelo y ventanas de tubos de vuelo de sala de esperimentos	Actuada		E03,E05
05	03	Tubo s de vacio y ventanas de tubos de vueio de sala de experimentos Tubo de rayos X	Manual		EOS
-	01	Mesa XYZ + Motorización (10 metros)	Manual		EOS
06	02	Mesa Theta + Motorización (10 metros)	Actuada		E03,E05
			Actuada		E03,E05
05	05	Goniòmetro para interferometria aGl#2	Actuada		E03,E05
06	03	Goniòmetro de dos ejes + Motorización	Actuada Manual		E03,E05 E03
	04	Soporte de muestras y entornos de muestra Camera box	Manual		EOS
	02	Bindaje	Manual		
	03	Cámara digital sCCD o sCMO5			EOS
	04	Optica convencional de alta calidad	Manual		E03
07	05	Centelladores de lítio y gadolínio	Manual	Local	EOS
	05	Espejos especiales de alta calidad	No aplica	Local	EOS
	00	Espejos espectares de arta cantad Sistema de autofoco (opcional)	No aplica	Local	E03
	-	5.4 6	Actuado		E03,E05
	08	Mesa XYZ + Motorización	Actuada	Ambas	E03,E05
05	03	Tubo's de vuelo y ventanas de tubos de vuelo de sala de experimentos	Manual		EOS
05	01	Beam stop	No aplica	Local	E03

.018 – PSI

ASTOR CONFIGURATIONS

- In operation mode is neccesary to identify the configurations of the instrument. There is (so far...) 23 different possibilities.
- Each configuration indicates the engineers which component has to be "on line" and where it will be.

7 LALIN	CONFIGURACIONES			
1 marganeer	Configuración 1.0			
Sub Sistema	Componente			
01	01	Oburador primario		
	02	Colimator Primario		
	01	Filtro neutrones rápidos (zafiro)		
02	02	Colimador secundario		
	03	Obturador secundario		
	01	Obturador rápido		
	02	Calesita de filtros		
	03	Selector de velocidad (Mecínico)		
	04	Goniòmetro para interferometria nGl#1		
04	05	Mono cromador de doble cristal (Selector de velocidad pasivo)		
	06	Chopper		
	07	Tubo de vuelo y ventanas de tubos de vuelo de sala de conformación de haz		
	08	Limitador de haz XY de sala de conformación de haz		
	09	Limitador de Haz pasivo		
	02	Limitador de haz XY de sala de experimentos		
05	03	Tubo/s de vuelo y ventanas de tubos de vuelo de sala de experimentos		
05	04	Tubo de nayos X		
	05	Goniômetro para interferometria nGI#2		
05	01	Mesa HUBER + Motorización (10 metros)		
~	02	Soporte de muestras y entornos de muestra		
	01	Camera box		
	02	Blindaje		
	03	Cimara digital sCCD o sCMOS		
07	04	Optica convencional de alta calidad		
	05	Centelladores de litio y gadolinio		
	05	Espejos especiales de alta calidad		
	07	Sistema de autofoco (opcional)		
	05	Mesa XYZ + Motorización		
05	03	Tuboís de vuelo y ventanas de tubos de vuelo de sala de experimentos		
08	01	Beam stop		

7	CONFIGURACIONES			
	Configuración 1.1			
Sub Sistema		Componente		
01	01	Obturador primario		
	02	Colimador Primario		
	01	Filtro neutrones rápidos (zafiro)		
02	02	Colimador secundario		
	03	Obtarador secundario		
	01	Obturador rápido		
	02	Calesita de filtros		
	03	Selector de velocidad (Mecínico)		
	04	Goniòmetro para interferometria nGI#1		
04	05	Monocromador de doble cristal (Selector de velocidad pasivo)		
	05	Chopper		
	07	Tubo de vuelo y ventanas de tubos de vuelo de sala de conformación de haz		
	08	Limitador de haz XY de sala de conformación de haz		
	09	Limitador de Haz pasivo		
	02	Limitador de haz XY de sala de experimentos		
05	03	Tubo's de vuelo y ventanas de tubos de vuelo de sala de experimentos		
05	04	Tubo de rayes X		
	05	Goniômetro para interferometria nGI#2		
05	01	Mesa HUBER + Motorización (10 metros)		
~~	02	Soporte de muestras y entornos de muestra		
	01	Camera box		
	02	Blindaje		
	03	Cimara digital sCCD o sCMOS		
07	04	Optica convencional de alta calidad		
	05	Centelladores de litio y gadolinio		
	05	Espejos especiales de alta calidad		
	07	Sistema de autofoco (opcional)		
	05	Mesa XYZ + Motorización		
05	03	Tubo/s de vuelo y ventanas de tubos de vuelo de sala de experimentos		
08	01	Beam stop		

ASTOR DESIGN ROADMAP

- March 2017. 1st STAP revision of conceptual design.
- April 2018. LAHN Internal preliminary revision of mechanical design.
- June 2018. Requirements documentation finished.
- October 2018. Selection of mechanical design of critical components.
- December 2018. Preliminary design review.
- May 2019. Documentation of preliminary mechanical design finished.
- July 2019. 2nd STAP revision of mechanical design.

CONCLUSIONS

- We presented here the main actual design of the instrument for neutron imaging ASTOR.
- Modes of operation, main components, configurations and requirements are defined.
- ASTOR will be one of the first instruments of the new reactor RA-10 in Argentina.
- The instrument is designed to be state-of-the-art and to apply modern neutron imaging techniques for local, regional and international user communities.
- Mechanical design is on schedule and next year is expected to produce some prototypes. i.e. secondary collimator drum.

Open questions from ASTOR team...

- Radiation hard components? What kind of considerations about cables, o-rings, sealings, step motors, controlers.... Etc. Preventive maintenance??
- Sample environment equipment. Considerations? Typical mass, volume. Manipulation advices.
- Velocity selector. Vibrations? How to design the mounting in relation to vibrations?
- Alignment of components. Procedures? Tools? Advices?

THANK YOU FOR YOUR ATTENTION

LAHN Project Comisión Nacional de Energía Atómica WWW.lahn.cnea.gov.ar

lahn@cnea.gov.ar

Open questions from the team!

Algunas preguntas que quizás puedan ser respondidas por allá

1. Respecto a la sala de conformación de haz: preguntar cómo van montados los componentes en otros laboratorios. Especialmente aquellos que se tienen que intercambiar: Selector de velocidad, Goniómetro para nGI, Monocromador doble cristal y Chopper. ¿Qué soluciones hay actualmente empleadas para asegurar la alineación de estos componentes cada vez que se montan? ¿Cuánto tiempo demora este tipo de tarea?

2. Respecto a la sala de experimentos: ejemplos de soluciones implementadas en otros laboratorios para desplazar la mesa porta muestra y montar los tubos de vuelo. ¿Los tubos de vuelo están sobre plataformas fijas o móviles?

3. Alineación para ambas salas. ¿Cómo se efectúa el posicionamiento de los componentes respecto del haz? ¿Se toman referencias desde el reactor y desde allí se alinea? ¿O se alinea tomando mediciones a partir del haz de neutrones? Tolerancia en direccion Z para el posicionamiento de los componentes.

4. Respecto a Selector de velocidades / Choppers: Si hay infrmación disponible respecto de los efectos dinámicos que generan sobre la estructura o bastidor que los sostiene.

 Con qué nos podríamos encontrar, desde el punto de vista mecánico usualmente en Entorno de muestras?. Qué capacidades preveer? Masas/volúmenes a mover, etc?

6. Recomendaciones sobre consideraciones especiales a tener debido a los efectos de la radiación para elementos como Sellos, Cables, Actuadores y sensores.

LABORATORIO ARGENTINO DE HACES DE NEUTRONES

UPCOMING EVENTS

Don't miss out!

III LAHN School on Neutron Scattering and Imaging Techniques

II LAHN Conference on Neutron Scattering and Imaging Techniques

www.lahn.cnea.gov.ar