

Cryogenic System for the Ultra Cold Neutron Source (UCN Source) at the FRM II

Part 1: Design, Performances and Unique Properties

Johann Schilcher

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Ultra Cold Neutrons

- Definition Reflected from walls at any angle of incident, thus can be stored in traps
- Typical values
 - Energy < 300 neV
 - Velocity < 8 m/s
 - Wavelength > 100 Å
- Scientific Use
 - Investigation of the properties of the neutron and its decay
 - Lifetime of the free neutron
 - Electric dipole moment of neutron
 - Quantum states in the gravitation field of the earth

-

Production of Ultra Cold Neutrons

- Cold moderators and extraction of low energy neutrons
- Curved tube, all but UCN be absorbed by the walls
- Vertical guide to separate UCNs by gravity (deceleration)
- Bladed turbine by which neutrons directed tangentially are reflected and decelerated
- Superthermal conversion with superfluid ⁴He at 0.7K [2]
- Moderation with solid H₂ and subsequent superthermal conversion with solid D₂ at 5 K [1]
 → Method applied at FRM II.

Design and Installation of the UCN source at the FRM II

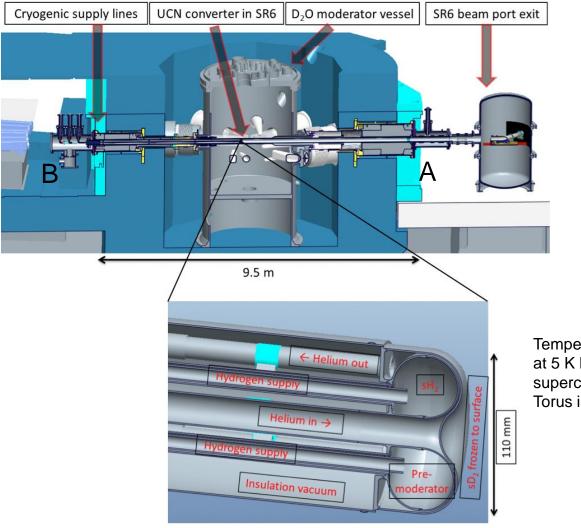


Fig. 1: Cross section of reactor and torus for UCN production

Temperature of sH_2 and sD_2 to be kept at 5 K by cooling system with supercritical Helium. Torus is made of aluminium

Interfaces

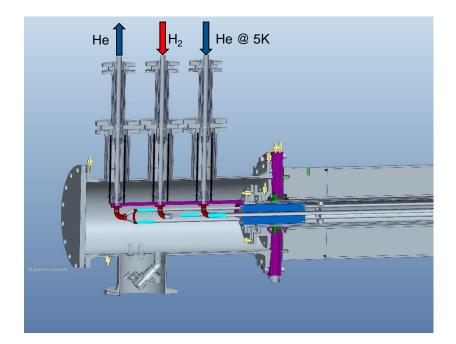


Fig. 2 - Cross Section Interface B side of the reactor

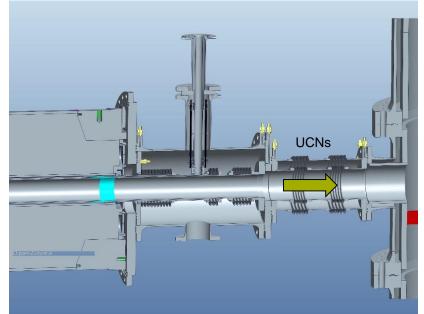


Fig 3. - Cross Section Interface A side of the reactor

Nuclear Heat Deposition on the Converter [3]

Thermal load on the materials of the convertor by

- Neutron scattering: Thermalisation, (n,α) -reactions
- Prompt *γ* Contributions
- Creation of the isotope ²⁸Al, β ⁻ decay

\rightarrow Total heat load on the converter

~500 W @ 5 K

[3] Röhrmoser, A: Ultrakalte n-Quelle (UCN) im Strahlrohr SR-6 des FRM II. Verschiedene Studien zu Flussverhältnissen im Reaktor und nuklearer Wärmedisposition. 2010-12-21

Converter Cooling with Liquid Helium

 Heat load 	500	W
 Flowrate IHe, mass 	120	g/s
 Flowrate IHe, volume 	58	l/min
 Temperature feed line 	5	K
 Temperature rise 	1,5	K
Pressure	0,34	MPa (3,4 bar)
6 5 Solid (hcp) 3 (bcc)+ Normal Liquid	He: Critic:	al pressure: 2.29 ba

Critical pressure: 2,29 bar Critical temperature: 5,21 K

ġ.

4

2

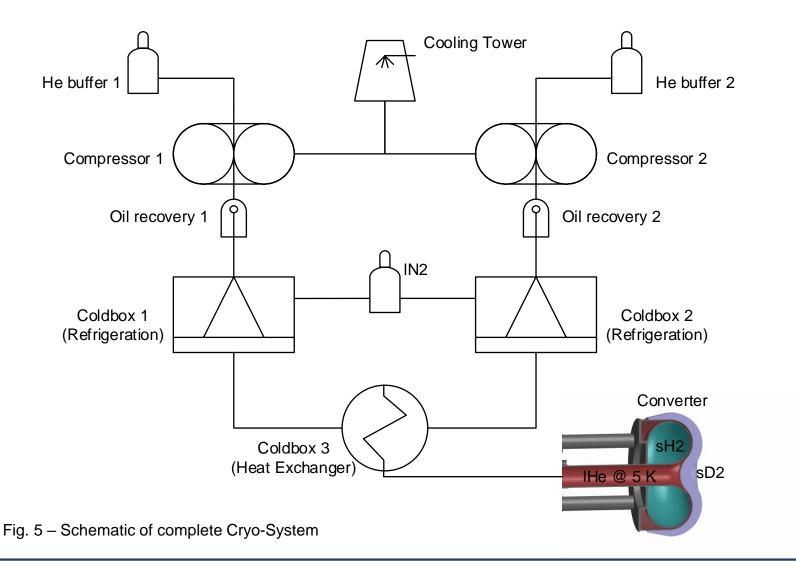
Superfluid

1

1

0

0


Gas

6

The Refrigeration/Cooling System

Specific "Nuclear" Features

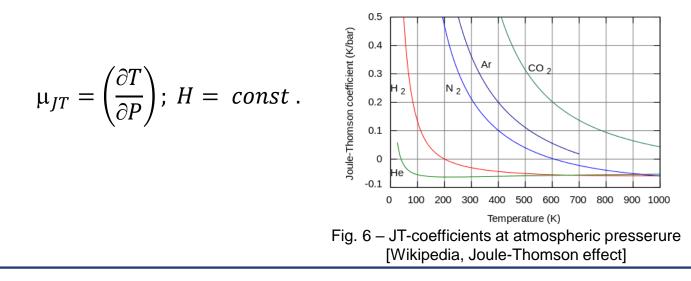
- Separation of cycles
 - Cold Box 3: heat exchanger with buffer system
 - Refrigeration cycles hermetically separated from converter cooling cycle
 - Cold Box 3 serves as barrier / containment
 - All valves physically tight (bellows)
- Isotopically pure ⁴He as cooling agent in converter cycle
 - Irradiation by neutrons: ³He-part of "normal" helium converts/accumulates to Tritium $\rightarrow \beta$ decay, half-life 12.3 years
 - ⁴He unaffected by neutron irradiation
- Two compressors/cold boxes each having 100% capacity
 - Redundancy / back-up
 - Provision of liquid helium to other instruments

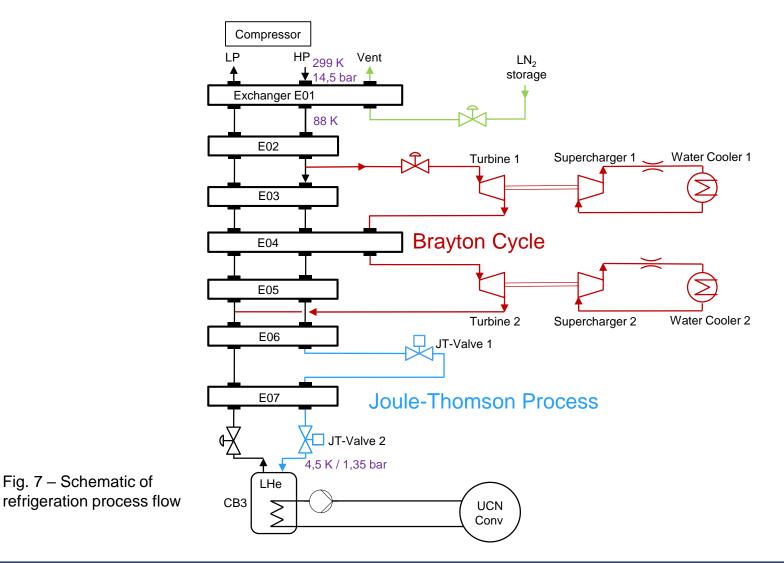
Technical Data of Cooling System

- Compressors
 - Screw compressors with variable frequency drives, single stage, oil lubricated

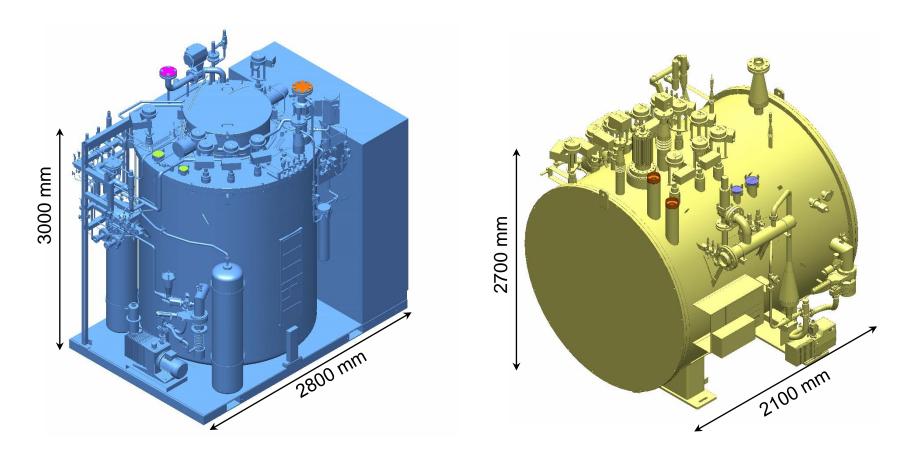
- Power, each	250	kW
- Pressure	14,5	bar
 Flowrate max, each 	85	g/s / 28,5 N _{orm} m ³ /min
- Buffer size, each	15	m ³
- Buffer pressure, max	16	bar
 Cooling tower capacity 	500	kW

- Cold boxes 1 and 2
 - Triple stage refrigeration by IN₂, Brayton cycle (2 turbines) and 2 Joule-Thomson valves
 - Cooling power cont., each 500 W @ 5 K
 - He liquification min., each
 - LN₂ storage tank


70 l/h 12 m³


Helium for Refrigeration

- Helium is liquid at very low temperatures Solid phase at high pressure only (>25 bar)
- Joule-Thomson with Helium
 - Joule-Thomson process simplest method for refrigeration
 - Prerequisite: Joule Thomson coefficient $\mu_{IT} > 0$.
 - Helium inversion temperature \approx 40K, above other methods to be applied (Brayton cycle, liquid nitrogen)


Process Flow

Cold Boxes (CAD)

Non-Nuclear Testing

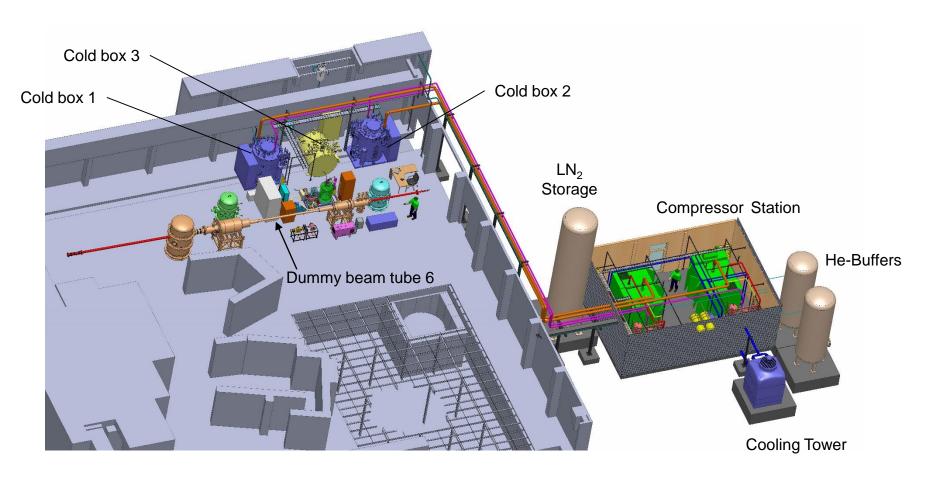


Fig. 10 - Set-up of complete system outside reactor for non-nuclear testing

Testing Set-up

Compressor Station with He-Buffers and LN₂ Storage

Testing Set-up

Cold Boxes with Dummy Beam Tube

17

Thank You for Your Attention!