

Masako Yamada Neutron Optics and Scientific Computing group, LDM, NUM :: Paul Scherrer Institut

Neutron field spectrometry at high energy neutron facility with extended range Bonner Sphere Spectrometer system

19th Sep. 2018, DENIM2018 at PSI

The *beam flux* at a sample position

The *background* at a sample position by Factor > 2

- Borated water tanks around guide bundles in neutron guide bunker (sector10)
- New concrete material and lamella structure for shielding
- Our own system to measure a neutron spectrum
 - over wide energy range with simple system is necessary.

Neutronic Background at 12 m distance from the cold source

AMOR guide system transports 1.5 better signal to noice ratio as the SANS guide

50 cm borated PE wall reduces the background by a factor 5-6

- 1. Development of Bonner Sphere Spectrometry (BSS) system at PSI
- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden
- 4. Application to "in-Bean" measurement
- 5. Investigation of new shielding materials

1. Development of Bonner Sphere Spectrometry (BSS) system at PSI

- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden
- 4. Application to "in-Bean" measurement
- 5. Investigation of new shielding materials

Bonner Sphere Spectrometer (BSS)

PAUL SCHERRER INSTITU

Neutron spectrum in a broad energy range with coarse energy resolution : 12 order of magnitude (1 meV – 20 MeV) → possible extension ~ 100GeV

Extension of energy range up to 100 GeV

PSI in-house BBS system, Fine tuning

Moderating spheres

- PE x 10 spheres
- Extension (Cu) x 1
- Extension (Pb) x 4

Machining PE & Cu
Casting Pb (n-CT, BE)
Calibration at PTB
Detailed characterization for fine-tuning of response functions (PE, Cu, Pb)

³He proportional counter + pre-Amp

DETECTO

- ø3.2cm, 2.3 bar /0.02bar
- 10kcps @4% loss
- Angle dependencies < ±60° (otherwise => 50%)

 Characterization
 Low efficiency counter
 Refinement (better S/N, dead time correction, etc)
 Calibration stations (neutronic and electronics)

Mobile DAQ rack + PC

- Mobile
- TOF option

Internal : NUM / GFA/ LOG, NIAG External : SINE2020 program

Unfolding Cf-252 spectra using MAXED, UMG

Characterization of Pb spheres using Neutron tomography

NEUTRA, SINQ

6-4" sphere

Index (i)	$d_{PE,inside}$	Material	d _{Inlay}	$d_{PE,outside}$
22"	3"	Pb	5"	7"
24"	4"	Pb	5"	7"
25"	4"	Pb	6"	8"

Aanlysis

Positions and volume of Void or interstices

Density homogenity

- 1. Development of Bonner Sphere Spectrometry (BSS) system at PSI
- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden
- 4. Application to "in-Bean" measurement
- 5. Investigation of new shielding materials

Measurement location and setups

	1 st bunker	2 nd bunker
Distance from the CS	7.4 m	12.5 m
Heigh [m]	1.53 m	1.25 m
Proton beam current	20 μA	200 μA
Exposure time	600 sec	60 sec

Simulation (by MCNP, R. Bergmann (GFA))

PAUL SCHERRER INSTITUT

Spatial distribution (by MCNP, R. Bergmann)

Fast (0.1 MeV - 20 MeV)

Fast (20 MeV - 600 MeV)

 10^{-3}

10-10

10-9

10-8

10-7

10⁻⁶ 10⁻⁵ 10⁻⁴

Energy (MeV)

10⁻³ 10⁻²

 10^{-1} 10^{0}

difference (-30m) reduced the background by factor of 25-50.

 \rightarrow The validation of PSI- BSS system is planned at a know field.

 \rightarrow The unfolding accuracy is improving.

PAUL SCHERRER INSTITU

Simulation study of new shielding in bunker

50 cm borated PE & 10 cm steel reduces significantly the n-background (5-6 times)

 \rightarrow 50 cm borated PE wall reduces the background by a factor 5-6

 \rightarrow Validation by measurement strongly supports simulation study.

- 1. Development of Bonner Sphere Spectrometry (BSS) system at PSI
- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden
- 4. Application to "in-Bean" measurement
- 5. Investigation of new shielding materials

The training and research reactor AKR-2, TU Dresden

Neutron source

 AKR-2 of the TU Dresden, Educational reactor:
 The thermal, homogeneous, solid material moderated zero power reactor with maximum continuous power of 2 Watt.

Ref : https://tu-dresden.de/ing/maschinenwesen/iet/wket/ausbildungskernreaktor-akr-2/profil

Horizontal cross section of AKR-2 reactor, distances in cm

Vertical cross section

Reactor Core

- A homogeneous mixture of 20% enriched Uranium oxide and PE.
- Diameter : ø25cm
- Height : 27cm
- Flux : 2.7x10⁷ n/s/cm²

Reflector

- Graphite, t15cm

Biological shielding

- Paraffin, t15cm
- Heavy concrete, t60cm

By Michal Košt^{*}al, et al.

Field Test with BSS system

- detailed MCNP model exists
- at position A the fast neutron spectrum was measured by another group (proton recoil method)

Field test was in April 2018

- (1) Verification of the known n-spectrum
- (2) Measurement an un-known n-spectrum (Pos. B)

Measurements at AKR-2 reactor. Preliminary Results

PAUL SCHERRER INSTITUT

PSI: Layout High-Intense-Proton Accelerator

SwissFEL measurements

- Measurements in OPTICS hutch
- Position z585
- Measurements behind 90cm of concrete shielding

- 1. Development of Bonner Sphere Spectrometry (BSS) system at PSI
- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden

4. Application to "in-Bean" measurement

5. Investigation of new shielding materials

1. High intensity beam

→ The flux is ~ 10² to 10³ times higher than "background" field.
 → Low-efficiency detector (10⁻²)

2. Discriminate the "back ground" neutrons from the beam

→ The shielding box which has a lamella structure is under development.
 → The optimum design will be investigated.

3. Under illumination of spheres

Modification of response functions

Sphere is **under/inhomogeneously illuminated** → Response function should be modified

MCNP calculation

Ø5cm beam, 12"(PE) sphere

Application for Material Studies

☑ Modified response functions (method)

- Beam size on the sphere
- Beam position on the sphere

Fast neutron imaging setup at BOA

Fast neutron imaging

- Fast neutron scintillator (>0.8MeV)
- MIDI imaging box

- 1. Development of Bonner Sphere Spectrometry (BSS) system at PSI
- 2. Measurement at the neutron guide bunker in SINQ
- 3. Measurement at AKR-reactor in TU-Dresden
- 4. Application to "in-Bean" measurement
- 5. Investigation of new shielding materials

Needs at PSI/SINQ – Upgrade AMOR

- inside vacuum housing 32 shielding blocks are positioned
- must be high precision and non-magnetic (polarized beam)
- shielding through neutron guide bunker must be very compact because of space limitation (performance), use of non-magnetic heavy concrete is foreseen

Upgraded AMOR – SELENE Type guide

Vaccum Housing of Selene guide system

New high-precision Shielding Material – Mineral Cast

Epustone

Epument

Mineral cast is used as the base of high-precision machines

Epustone has the mechanical properties of granite - interesting for our ESTIA project

Epument has good shielding properties like concrete – high hydrogen content – SINQ Upgrade (AMOR) Optimisation: add a thermal neutron absorber (B4C) in the composition.

First test series (14 compositions) in the BOA neutron field were done (activation, attenuation for diff. E)

Partner: RAMPF Machine Systems GmbH & Co. KG

High dencity concrete

Requirement

- non-magnetic material -> polarized beamlines
- high content of boron

high dencity material for compact shielding (> 5 g/cm3)
 Characterisation on BOA and ICON Beamline at SINQ (both beamlines have fast neutrons)

Partner: SACAC AG Switzerland

Mineral Cast Samples

- 20 different mineral cast samples were investigated.
- Epument 130 and Epument 145 are comparible to concrete
- Epustone 161 is specially made as a replacement for granite
- Epument is usually without Boron (test samples have 1 and 3 % B4C)
- EFA (ash) is a problem because C-60 is included

Sample Nr.	Mineral cast	Modification
	(base material)	
1	EPUMENT 130	no (reference sample)
2	EPUMENT 130	1 % wt B ₄ C
3	EPUMENT 130	3 % wt B ₄ C
4	EPUMENT 130	without superplasticizer (flue-ash)
5	EPUMENT 130	without superplasticizer (flue-ash),1 % wt
		B₄C
6	EPUMENT 130	without superplasticizer (flue-ash), 3 %
		wt B₄C
7	EPUMENT 161L	no (reference sample)
8	EPUMENT 161L	1 % wt B ₄ C
9	EPUMENT 161L	3 % wt B ₄ C
10	EPUMENT 161L	1 % wt B ₄ C (Sand reduced by 1 %wt)
11	EPUMENT 161L	3 % wt B ₄ C (Sand reduced by 1 %wt)
12	EPUMENT 145	without basalt, without superplasticizer
		(flue-ash)
13	EPUMENT 145	without superplasticizer (flue-ash), 1 %
		wt B ₄ C, without basalt
14	EPUMENT 145	without superplasticizer (flue-ash), 3 %
		wt B ₄ C , without basalt

Bonner Sphere Spectrometer (BSS)

PAUL SCHERRER INSTITU

Neutron spectrum in a broad energy range with coarse energy resolution : 12 order of magnitude (1 meV – 20 MeV) → possible extension ~ 100GeV

4. 3.5", transmission of 5 samples (Epi-thermal)

3.5" – has broad sensitivity in epithermal, the peak is at 10keV

sample	linear attenuation coefficiency [mm ⁻¹]
no.6	0.0393
N1	0.0409
N2	0.0412
N3	0.0423
N4	0.0333

Best sample is N3

5. 12", transmission of 5 samples (Fast neutrons)

12" – sensitivity peak is at 4 MeV

PAUL SCHERRER INSTITUT

sample	linear attenuation
	coefficiency [mm ⁻¹]
no.6	0.0135
N1	0.0139
N2	0.0138
N3	0.0141
N4	0.0128

Best sample is N3

6. Activation with thermal neutrons

Conclusion:

N1, N2, and N3 have the same activation level as #6. N4 has a lower activation level, but shielding performance is low.

