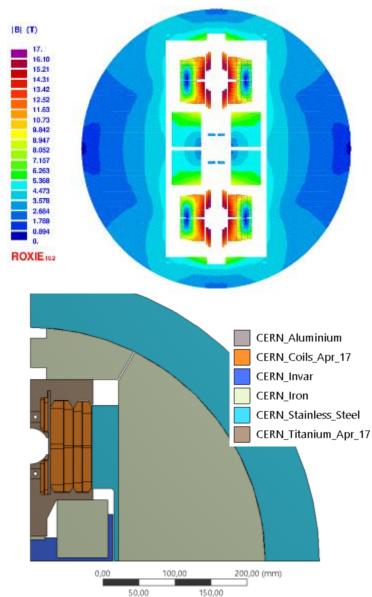


# High Field Magnets

### Overview on High Field Magnet program at CIEMAT

J. García-Matos, C. Martins, F. Toral, CIEMAT J. C. Pérez, CERN




#### Table of contents

- Background
- High field magnet program at CIEMAT
- Ongoing activities



#### Background

| Parameter                                                        | Value                    | Units           |  |  |  |
|------------------------------------------------------------------|--------------------------|-----------------|--|--|--|
| Magnet configuration                                             | Twin-aperture dipole     | -               |  |  |  |
| Free aperture                                                    | 55                       | mm              |  |  |  |
| Intra-beam distance                                              | 320                      | mm              |  |  |  |
| Nominal bore field                                               | 16.0                     | Т               |  |  |  |
| Magnetic length                                                  | 14.069                   | m               |  |  |  |
| Working temperature                                              | 1.9                      | К               |  |  |  |
| Nominal current                                                  | 15880                    | А               |  |  |  |
| Iron yoke outer diameter                                         | 650                      | mm              |  |  |  |
| Number of cable turns of the main<br>coil (per magnet side)      | 80                       | -               |  |  |  |
| Number of cable turns of the<br>secondary coil (per magnet side) | 76                       | -               |  |  |  |
| Number of cable turns of the pole<br>coils (per magnet aperture) | 16                       | -               |  |  |  |
| Number of strands per cable<br>(HF/LF/PC)                        | 28/18/30                 | -               |  |  |  |
| Strand diameter (HF/LF/PC)                                       | 1.2 / 1.2 / 1.2          | mm              |  |  |  |
| Cu/non-Cu ratio (HF/LF/PC)                                       | 1/2.6/1                  | -               |  |  |  |
| Total surface of strands                                         | 166.8                    | cm <sup>2</sup> |  |  |  |
| Total FCC bare cable weight                                      | 9502                     | ton             |  |  |  |
| Parameter                                                        | Value                    | Units           |  |  |  |
| Field peak in cables                                             | 16.57                    | Т               |  |  |  |
| Margin on load line in cable type<br>(HF/LF/PC)                  | 14.1 / 14.3 / 14.1       | %               |  |  |  |
| b3 / b5 / b7 / b9                                                | -0.2 / -4.5 / 1.6 / -2.3 | units           |  |  |  |
| a2 / a4 / a6 / a8                                                | 0.4 / -0.9 / -0.9 / -0.3 | units           |  |  |  |
| Stored energy                                                    | 3.24                     | MJ/m            |  |  |  |
| Static self inductance                                           | 25.7                     | mH/m            |  |  |  |
| L*I                                                              | 408                      | HA/m            |  |  |  |
| Sum Fx                                                           | 14.47                    | MN/m            |  |  |  |
| Sum Fy                                                           | 0.37                     | MN/m            |  |  |  |



#### EuroCirCol layout for 16 T common coil magnet



#### High field magnet program at CIEMAT

- Initial constraints for the research on high field magnets at CIEMAT:
  - Some delay to start the activity due to the workload driven by MCBXF magnets.
  - The new laboratory will not be fully operational till Spring 2024.
  - Previous work was focused on common coil layout.
- Our proposal is based on the following steps:
  - 1. Model magnet using RMC coils in common coil configuration.
  - 2. Revisit the existing design of 16T common coil dipole magnet.
  - 3. Research on fabrication techniques: react-and-wind coils.
  - 4. Prototype of a high field magnet in common coil configuration.

|             | HIGH FIELD SC MAGNET MODELS FOR FCC                                                  | 20 | 22 |  | 20 | 23 |  | 20 | 24 |  | 202 | 25 |  | 20 | 26 |  | 202 | 27 |  |
|-------------|--------------------------------------------------------------------------------------|----|----|--|----|----|--|----|----|--|-----|----|--|----|----|--|-----|----|--|
| UM-IO-1.1   | Provision of building and services                                                   |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UM-IO-1.2   | Set-up and commissioning of laboratory                                               |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UM-IO-2.1   | Production of tooling and structure for ERMC and RMM                                 |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UM-IO-2.2   | Production of practice coils                                                         |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UM-IO-3.1   | High field demonstrator: detailed design                                             |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
|             | High field demonstrator: design and procurement of the                               |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UIVI-IU-5.2 | tooling                                                                              |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
| UM-IO-3.3   | High field demonstrator: manufacturing of the coils                                  |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |
|             | High field demonstrator: magnets assembly and participation to cold tests & analysis |    |    |  |    |    |  |    |    |  |     |    |  |    |    |  |     |    |  |



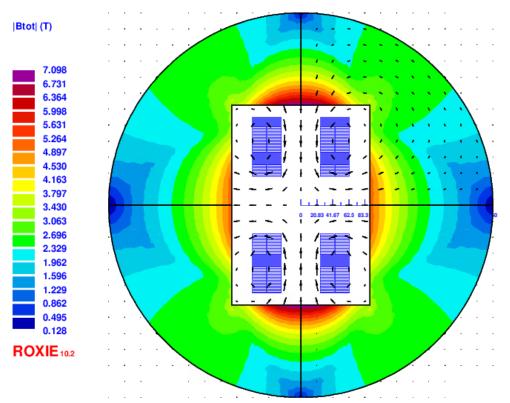
#### Magnet laboratory at CIEMAT (I)

- The building has been finished.
- A new crane is necessary for the hall devoted to magnet assembly.





#### Magnet laboratory at CIEMAT (II)

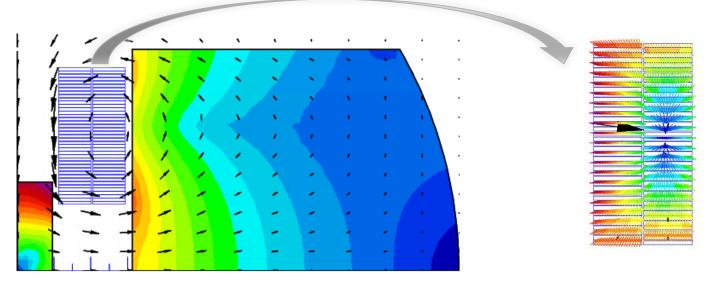

- Procurement of large equipment is starting: reaction furnace, press.
- Procurement of the rest of the equipment is more advanced: machines for mechanical workshop, benches, shelves, tooling.





#### Design of a common coil magnet using existing RMC coils (I) Design ID 2D VO 80 Units

• First design yields about 10 T in a 50 mm aperture.




| Design ID           | 2D_V0_80 | Units |
|---------------------|----------|-------|
| Aperture            | 50       | mm    |
| Intra-beam dist.    | 152      | mm    |
| I_nom               | 16       | kA    |
| Yoke inner X        | 90       | mm    |
| Yoke inner Y        | 130      | mm    |
| Yoke outer diam.    | 500      | mm    |
| В                   | 10.25    | Т     |
| Peak field          | 11.68    | Т     |
| Load                | 80.2     | %     |
| Stored energy       | 855      | kJ/m  |
| Static Self Induct. | 6.68     | mH/m  |
| L*I                 | 106.86   | HA/m  |
| Stray field (20 mm) | 0.29     | Т     |
| Sum Fx Q1           | 4.19     | MN/m  |
| Sum Fy Q1           | 1.54     | MN/m  |
| Total F             | 4.47     | MN/m  |
| b3                  | 584.7    | units |
| b5                  | -2.02    | units |
| b7                  | -1.32    | units |
| a2                  | -458.7   | units |
| a4                  | 7.32     | units |
| a6                  | -0.09    | units |



### Design of a common coil magnet using existing RMC coils (II)

- Sensitivity analysis is ongoing:
  - position of coils vs field aperture
  - iron geometry vs Lorentz forces
- First calculations on magnet protection.





## Design of a common coil magnet using existing RMC coils (III)

- Study of previous experiences: visit to BNL and LBNL.
- First mechanical calculations:
  - Conceptual analysis: preload, type of support structure



#### Design of a CIEMAT FCC-hh short dipole model magnet

- Two strands are available for the model magnet fabrication: MQXF and ERMC-1.
- Electromagnetic calculations of a common coil magnet providing 14 T in the aperture are ongoing (restrained optimization because of available strands).
- The first objective is to evaluate the Lorentz forces.



#### Conclusions

- The new laboratory building is finished. Procurement of equipment is ongoing.
- Design of a common coil model magnet using existing RMC coils is progressing.
- Electromagnetic calculations of a 14 T common coil magnet have just started.

