

D. M. Araujo, B. Auchmann, A. Brem, M. Colin, M. Daly and T. Michlmayr

Status of PSI Nb $_3$ Sn Subscale Stress-Managed Common Coils Magnet

1st joint common-coils meeting, June 2023

This work was performed under the auspices of and with support from the Swiss Accelerator Research and Technology (CHART) program (www.chart.ch).

- LTS Roadmap
- Subscale Goals and Parameters
- Magnet Structure
- 2D Magnetic Design and Mechanical Analysis
- Common-coils as a first step
- Engineering Design Challenges
- Winding Trials

LTS & Hybrid Roadmap Outlook

Subscale Stress-managed Common-coils Goals and Parameters

 The subscale magnet serves as a platform for validating design and optimization tools, as well as manufacturing and assembly processes.

Goals		
Nominal Field B0	4 +	т
T operational	4.5	К
Max current	10.0	kA
Margin at Top and B ₀	> 15	%

Cable & strand (LBNL Subscale CCT)

Strand dia	0.6	mm
Number of strands	11	-
Bare dimensions	3.7 x 1.1	mm
Insulation thickness	0.155	mm
Cu/no-cu	1.17	

Dimensions		
Straight-Section	150	mm
Bore radius	22	
Intra-beam	120	
Total length	350	

- Return Side Representation
- Inner Common-coils
- Stress-Managed Structure
- Inner and outer coils
- Pole-coils
- Outer-collar
- Inner-collar
- Pole
- Filler
- Stress-Managed Structure, Collars, Pole and Filler made of Stainless-steel

2D Magnetostatics: $B_0 = 4.5 \text{ T}, I = 7.1 \text{ kA}$

Peak field on conductor: 5.49 T •

• Margin at 4.5 K: 15 %

2D Mechanical Analysis

- The analysis was performed with short sample current
- Von Mises Stress on Coils and Structure

ANSYS 2021 R1 Build 21.1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SEQV (AVG) **PowerGraphics** EFACET=1 AVRES=Mat DMX =.242E-03 SMN =60501.9 SMX =.389E+08 60501.9 .437E+07 .868E+07 .130E+08 .173E+08 .259E+08 .302E+08 .345E+08 .389E+08

ANSYS 2021 R1 Build 21.1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SEQV (AVG) **PowerGraphics** EFACET=1 AVRES=Mat DMX =.260E-03 SMN =2116.44 SMX =.253E+09 2116.44 .282E+08 .563E+08 .845E+08 .113E+09 .169E+09 .197E+09 .225E+09 .253E+09

If we test only the common-coils

• For the first subscale test, we would like to power only the common coils.

- In this case:
 - $-T_{op}$ = 4.5 K
 - $-B_0 = 5.1 \text{ T}$ at short sample
 - $I_{ss} = 8.9 \text{ kA}$

$$-B_{peak} = 6.13 T$$

• Peak field on conductor: 6.13 T

If we test only the common-coils: 3D

• Peak field on conductor: 6.16 T

• With the 3D model and at short sample:

 $- T_{op} = 4.5 \text{ K}$

 $-B_0 = 5.1 \text{ T}$ at short sample

 $-I_{ss} = 8.5 \text{ kA}$

With a iron yoke,
the enhancement
of field would be
of about 0.5 T

Engineering Design Challenges

- Coil / Stress-Managed Structure Insulation
- Winding methods for stress-managed structure
- Axially divides structure, gaps for heat treatment and closing gaps before impregnation
- Inter-layers Splices & Pole Coils Splices
- Instrumentation
- Vacuum bag impregnation with wax / filled-wax
- Handling the coil into the SM structure through all manufacturing process
- Assembling structure

A. Brem, M. Colin, M. Daly

Winding Trials: Methods

- Removable pole and ribs
 - Solid spar where pole and ribs are assembled during the winding process

• Pushing coil into the solid structure

Central pole First set of ribs Second set of ribs Connections Spar Conductor

Pusher Kapton Solid Structure

D. M. Araujo

Winding Trials: First Method

• Winding the second block • Placing the outer rib • After placing all ribs

Winding Trials: Second Method

• Placing the first rib set after 3 turns

• Placing the first rib after 3 turns

• Pushing the coil into the structure

Winding Trials: Improvements / comments

- **Split** the central pole to make the central lead winding easer
- Increasing the channel depth, since the coil was protruding
- Radius on the top part of the channel: the sharp edges could damage the cable and makes the coating process less effective.
- If the first method is used, we have to

find a way to better close the gaps between ribs parts

• Decreasing the channel width,

specially on the round corners where we measured a gap of up to 0.7 mm.

