

High Field Magnets

Update on Common Coil activities at CIEMAT

J. García-Matos, C. Martins, F. Toral, CIEMAT J. C. Pérez, CERN

October 19th 2023

Joint Common-Coil meeting CIEMAT-PSI-IHEP

Table of contents

- High field magnet program at CIEMAT
- Common Coil ongoing activities:
 - Magnetic design
 - Mechanical design

High field magnet program at CIEMAT

- Initial constraints for the research on high field magnets at CIEMAT:
 - Some delay in starting the activity due to the workload driven by MCBXF magnets.
 - The new laboratory will not be fully operational till Spring 2024.
- Our proposal is based on the following steps:
 - 1. Model magnet using RMC coils in common coil configuration (ISAAC Investigating Superconducting Assembly to Address Common coil mechanics).
 - 2. Research on fabrication techniques: react-and-wind coils.
 - 3. Prototype of a high field magnet in common coil configuration.

	HIGH FIELD SC MAGNET MODELS FOR FCC	2022		2023		2024		2025		2026		2027		27						
UM-IO-1.1	Provision of building and services																			
UM-IO-1.2	IO-1.2 Set-up and commissioning of laboratory																			
UM-IO-2.1	Production of tooling and structure for ERMC and RMM																			
UM-10-2.2	Production of practice coils																			
UM-IO-3.1	High field demonstrator: detailed design																			
	High field demonstrator: design and procurement of the																			
0101-10-5.2	tooling																			1
UM-IO-3.3	High field demonstrator: manufacturing of the coils																			
UM-10-3.4	High field demonstrator: magnets assembly and participation																			
01110 3.4	to cold tests & analysis																			

Magnetic design: Goals & constrains

- Main goal: learn for the 14T model, mostly mechanics
 - Provide 14T in the aperture (100% load required)
 - Decrease F_v: Low vertical preload goal (free horizontal movement, without friction)
 - Mechanics & assembly as easy as possible

Initial base case

Design ID	2D_V0_80	Units
Aperture	50	mm
Intra-beam dist.	152	mm
I_nom	16	kA
Yoke inner X	90	mm
Yoke inner Y	130	mm
Yoke outer diam.	500	mm
В	10.25	Т
Peak field	11.68	Т
Load	80.2	%
Stored energy	855	kJ/m
Static Self Induct.	6.68	mH/m
L*I	106.86	HA/m
Stray field (20 mm)	0.29	Т
Sum Fx Q1	4.19	MN/m
Sum Fy Q1	1.54	MN/m
Total F	4.47	MN/m

Magnetic design: Decreasing F_v

- Vertical EM forces inside the coil need to be as balanced as possible
- Yoke is used to pull the field lines in the desired direction
- Yoke is truncated above the coil to provide good horizontal support
- Middle yoke helps to decrease F_v significantly
- Mechanics of this truncated option need to be analyzed

Units	MN/m	MN/m	MN/m	N/A
Design ID 🗖	Total F	Sum Fx Q1	🚽 Sum Fy Q1 🚽	Ratio Fy/Fx 🗸
2D_V0_80: Base case	4.4673466	4.19413	1.53833	0.366781669
2D_V5_wo_MY: Truncated iron without middle yoke	4.325538645	4.279708	0.628	0.146738983
2D_V5_MY20x50: Truncated iron + middle yoke	4.205129335	4.17877	0.4701	0.112497218

Magnetic design to provide 14T

- Aperture decreased from 50 mm to 34 mm
- Yoke very close to the coil (only 1.2 mm away)
- Intra-beam distance tuned to decreased a2
- Middle yoke has a strong influence despite its assembly could be not straightforward
- Protection is possible using a dump resistor according to first simulations: R_{dump} = 45 mΩ yields a hotspot temperature of 286K and 900V voltage

Design ID	Block	Final RMC_CC	CC	CC*	Units
Aperture	74	34	74	74	mm
Intra-beam dist.	-	150	152	252	mm
I_nom	14486	19083	21353	20460	Α
Yoke outer radius	246	250	246	246	mm
В	14	14	11.3	11.96	Т
Peak field	16.16	14.8	14.27	14.51	Т
Peak Field/B	1.154	1.0571	1.263	1.213	-
			100.2		
Load	99.99	99.99	7	100.36	%
Stored energy	1752	1038	1701	1733	kJ/m
Static Self Induct.	16.7	5.7	7.46	8.28	mH/m
L*I	242	109	159	169	HA/m
Stray field (20 mm)	1.188	0.44	0.65	1.56	Т
Sum Fx Q1	5.1	6.636	5.79	6.53	MN/m
Sum Fy Q1	-4.3	0.474	3.02	0.73	MN/m

Magnetic design: field quality vs coil position

- 14T Magnet aperture: 34 mm
- Horizontal displacement 0.5mm => decrease field 1% aprox and multipoles variation below 0.5 units

mm	Т	units	units	units	units	units	units	units	units	%
Displ. X	Aperture field	b3	b5	b7	b9	a2	a4	а6	a8	% B
0	13.999139	297.12975	0.74637	2.18884	-0.52826	3.02079	-25.65207	-1.53509	1.44829	0
0.5	13.863671	297.03506	1.08324	2.19718	-0.53572	1.49924	-25.94459	-1.55069	1.46195	-0.96768808
1	13.729701	296.82646	1.42133	2.20147	-0.5382	-0.00928	-26.23901	-1.56249	1.47012	-1.92467551
1.5	13.597258	296.50431	1.75736	2.20814	-0.54216	-1.50665	-26.53531	-1.57543	1.4797	-2.87075512

Mechanical design (I)

First mechanical simulations:

- Parts in contact (without prestress) at room temperature
- Stainless Steel vertical pad
- Cooling (from 295.15K to 1.9K)
- Electromagnetic Forces

Mechanical design (I)

- Aluminium Shell similar to SMC CERN block configuration
 - Outer yoke radius: 250 mm
 - Shell thickness: 29 mm

Goal: Coil displacement below 1mm (after cooling) in order to:

- Reduce the possibility of sudden coil movements
- Aperture field over 13.7T

Mechanical design (III)

- Aluminium Shell inner radius from 250mm to 230mm:
 - Very similar magnetic field (14T => 13.98T)
 - Coil displacement reduced (1,95mm => 1,72mm)

	R230	R250		Dif.
Peak field B	14,553	14,559	Т	-0,04%
B (aperture)	13,980	14,000	Т	-0,14%

|Btot| (T)

0 20.83 41.67 62.5 83.33 104.17 125 145.83166.67 187.5 208.33229.17 250

Conclusions

- The new laboratory building is finished. Procurement of equipment is ongoing.
- Magnetic & Mechanical design of a 14T CC magnet using existing RMC-QXF coils (ISAAC):
 - F_y decreased: analysis of free horizontal movement of the coils without friction
 - Analysis of magnetic field sensitivity vs. coil position
 - Mechanical structure design ongoing (shell materials, dimensions...).
 Minimize coil horizontal displacement (less than 1mm)

