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Remote Handling with Robots at CERN

Main needs for robotics at CERN
➢ Inspection, operation and maintenance of radioactive particle accelerators devices for 

safety, maintainability, reliability and availability increase

✓ Experimental areas and objects not built to be remote handled/inspected
✓ Any intervention may lead to “surprises”

✓ Several risks, including contamination

The LHC tunnel North Area experimental zone Radioactive sample handled by a robot
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Main difficulties for robotics at CERN

➢Harsh and semi-structured environments, accessibility

➢Radiation, magnetic disturbances, delicate equipment not designed for robots, big 

distances, communication, time for the intervention, highly skilled people often 

required (non robotic operators), etc.
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Availability of Particle Accelerators

Reliable robots must 

be developed, and 

recovery scenarios 

must be foreseen

➢ @ constant machine reliability, 

maintainability drives availability

➢ Improve maintainability 

increasing efficiency of human 

interventions

✓ using robots in 

collaborations with humans
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The Robotic Service at CERN: Our Robots

High 

payload 

manipulator

Telemax robot

Teodor robot
EXTRM robot (CERN controls)

Train Inspection Monorail (CERN made)

CERNBot in different configurations  (CERN made)

Drone for tele-

operation support

Quadrupeds for 

“difficult” zones

More than 20 robots (custom 

made and/or industrial with 

custom controls) are in operation.

Mechatronics conceptions, 

designs, proof of concepts, 

prototyping, series productions, 

operations, maintenance, tools 

and procedures
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The Robotic Service at CERN
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➢ Remote maintenance

➢ Human intervention 

procedures preparation

➢ Quality assurance

➢ Post-mortem analysis 

➢ Reconnaissance

➢ Search and rescue

➢ And more…

Robotics technologies are 
mainly used for:
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Robots integrated within accelerator facilities
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4x Train Inspection Monorail (TIM) 

3x ISOLDE / MEDICIS high payload industrial robots

CHARM robot

2x SPS robot
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Robots for use in Experimental Caverns
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➢How to design robots for extreme environments 

during detector operation?

➢Unique challenges – unlikely to be out-of-the-box 

solution

➢Reseach durability of existing components/design 

new components?

➢Investigating best platform or combination of 

platforms for the environment

High

Radioactivity

Minimal

Intervention

High 

Magnetic 

Interference

Teleop & 

Autonomy

Long 

Duration 

Deployment

Battery & 

Charging
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?

Quadruped?

Tracked/Airborne/Other?

Combined Approach?

Novel Platform?
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Robotic preventive maintenance and inspection

SPS MKP oilers refill Remote radioprotection surveys Cabling status inspection

Temperature sensor installation on 

AD target

Tunnel structure monitoring Remote Vacuum Leak detection
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Fast reaction to equipment failures in radioactive 
areas

CHARM Target

In place 1 hour after the call

ISOLDE HRS Front-End 

In place 2 hours after the call

LHC TDE

New robot built in 3 days

North Area BLM cables connection

In place 50 minutes after the call
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Post-Mortem Analysis

11



Remote Handling with Robots at CERN

Importance of the design phase
➢ Designing machines that can be maintained by robots using appropriate and easily accessible

interfaces will increase maintainability and decrease human exposure to hazards

Easier remote or hands-on manipulation 

than chain-type connection

12



Remote Handling with Robots at CERN

Procedures and Tools
➢ Several time consuming and costly tools, procedures and Mockups done for intervention on non-robotic 

friendly interfaces during the last years (several done also in emergency situations)

✓ Intervention procedures, recovery scenarios, tools and mock-ups are as important as the 

robot/device that does the remote intervention

✓ Standardization of interfaces → standardized tools and procedures, reduce costs and intervention time 
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Human-Robot-Interface
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➢Controls all the BE-CEM robots

➢Includes enhanced reality modules

➢Different inputs device (keyboards, joystick, master arm etc.)

➢Operators training options

➢Multi screens capability

➢Time-delay passivation
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Robotic Interventions
➢ More than 1000 robotic operations over the last 8 years

➢ More than 1500 hours of in-situ robotic operations

➢ Strong machine availability boost thanks to planned and unplanned/emergency missions

✓ Continuing developing best practices for equipment design and robotic intervention procedures and tools

including recovery scenarios

The equivalent number of human interventions saved with 

robotic interventions assuming maximum annual exposure
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Started to apply CERN custom made robotic solutions.

Remote maintenance  capabilities and modularity strongly increased!

Robotic Interventions
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➢ Particle accelerators devices are normally installed for many years and tasks of dismantling radioactive 

objects is inherited by the future generation of physicists/technicians/engineers

➢ Maintenance and dismantling tasks, over a lifetime of a particle accelerator device, must be taken into 

account at design phase

➢ Robotic intelligent and robust systems can increase personnel safety and machine availability in 

performing such tasks

➢ Ready-to-use industrial solutions do not exist for user friendly remote maintenance and inspection

➢ We gained an important knowledge and experience in designing, producing and applying robots in harsh 

and hazardous environment

➢ External collaboration with Robotics Research Centres and Universities is crucial to take advantage of 

the cutting edge technology 

Conclusions
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