

中国科学院高能物理研究所 Institute of High Energy Physics, CAS

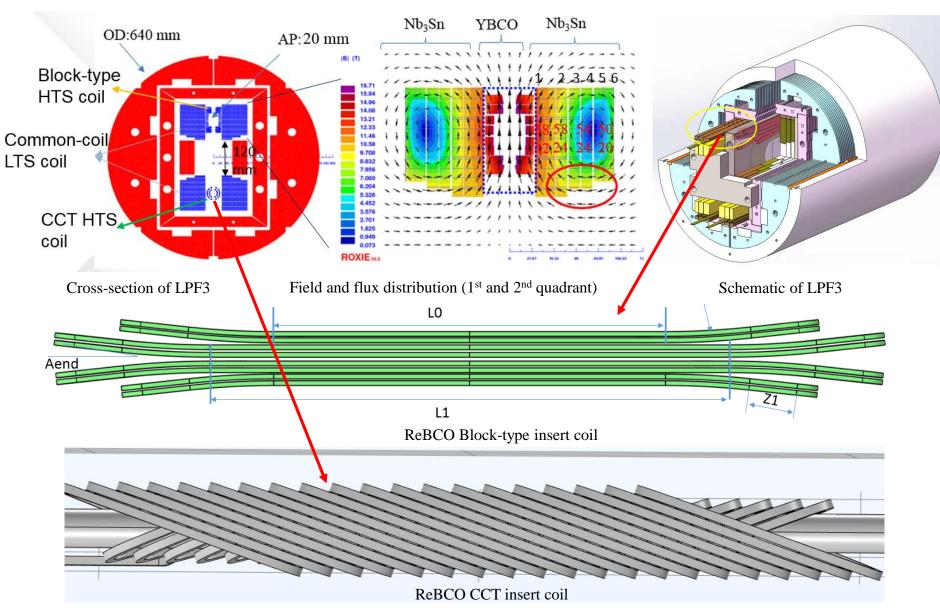
The recent progress of LPF3 testing

Superconducting Magnet Group, Accelerator Division Institute of High Energy Physics, Chinese Academy of Sciences (IHEP, CAS)

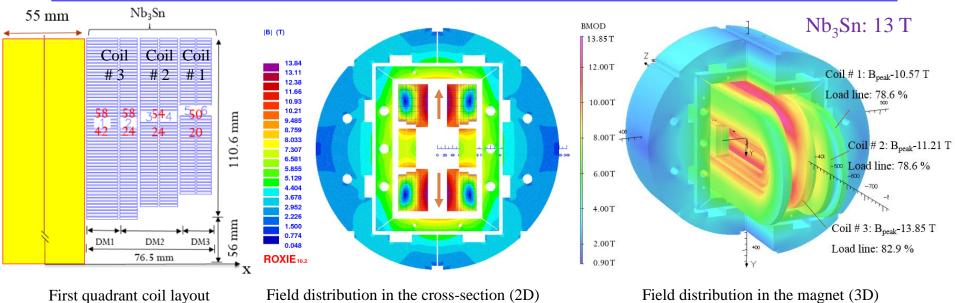
2023.12.14

Outline

• A brief review of the design and fabrication of


LPF3 magnet

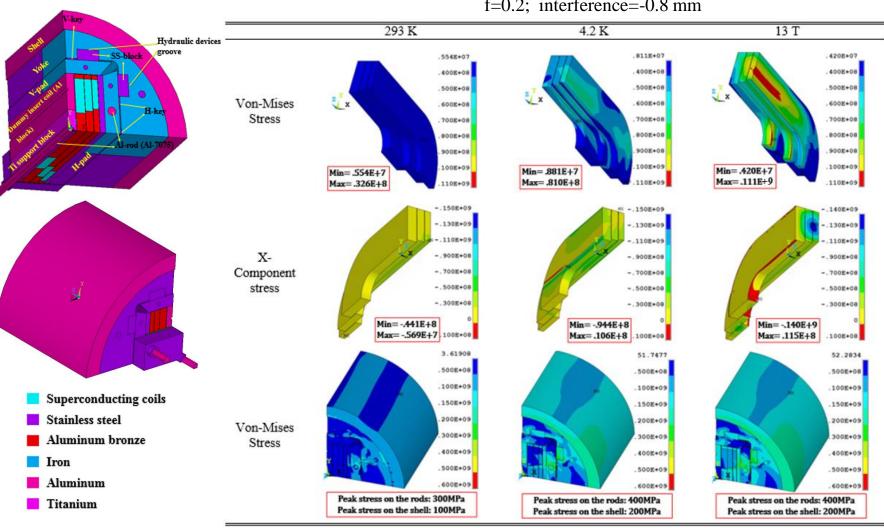
- Recent test progress of LPF3 magnet
- Summary


Development of LPF3- electromagnetic design

➢ Aiming at 16 T: 13 T (LTS) + 3 T (HTS)

To be 16 T

Electromagnetic design of LPF3-LTS

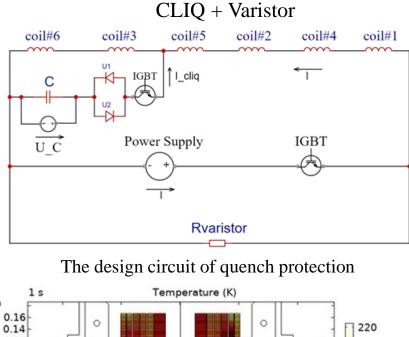


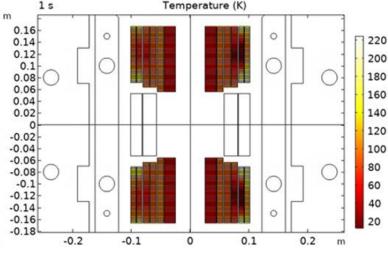
Field distribution in the magnet (3D)

Main parameters of the magnet LPF3-LTS

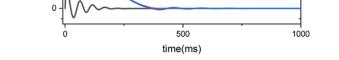
Current		7580 A]	Blocks	Block 1		Block	2	Blo	ck 3	Block	4	Block 5	Block 6
Main field		13.02 T		Pea	k field (T)	13.85		11.13		10.95		11.21	-	10.57	10.47
		15.02 1		LL ratio (%)		82.91		78.16		77.18		78.6		78.63	78.09
Integral harmonics (-150-150mm); R-10		b3: 102.76		b5: -0.08		b7: -0.01		b9: 0		a2: -48.11		a4: -0.14		a6:-0.02	a8: 0
Integral harmonics (-150-150mm); R-15		b3: 231.17		b5: -0.42		b7: -0.06	0	b9:0.01		a2: -72.09		a4: -0.4	46	a6:-0.14	a8: 0.01
Parameters	Aperture Ns	Aperture diameter		eak eld	Temper ature	Load line ratio	E	Energy				S (coil I ,2,3)		LSS (coil #1,2,3)	Cable Ns (DM1,2,3)
Unit	-	mm	Т		k	-		MJ	r	mH		nm		mm	-
Value	2	55	13.85 4.2		4.2	82.9		2.155 13		3.01	400,550,620 4		40	00,550,620	42,24,20

Mechanical analysis of LPF3-LTS


1/8 mechanical FEA model


Stress variation during the three loading steps

Required maximum pre-stress for bladders: 80 Mpa. Peak stress in coils during the three loading steps: 140 Mpa.


f=0.2; interference=-0.8 mm

Quench protection analysis of LPF3-LTS

The temperature distribution of the magnet

The current in the CLIQ circuit and current decay

Power supply in the CLIQ system

8000

7000

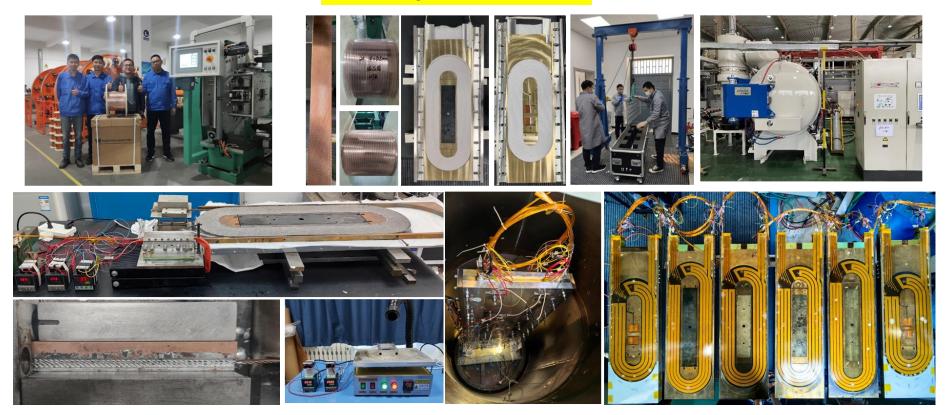
6000 5000 current(A)

> 2000 1000

The varistor

I_CLIQ

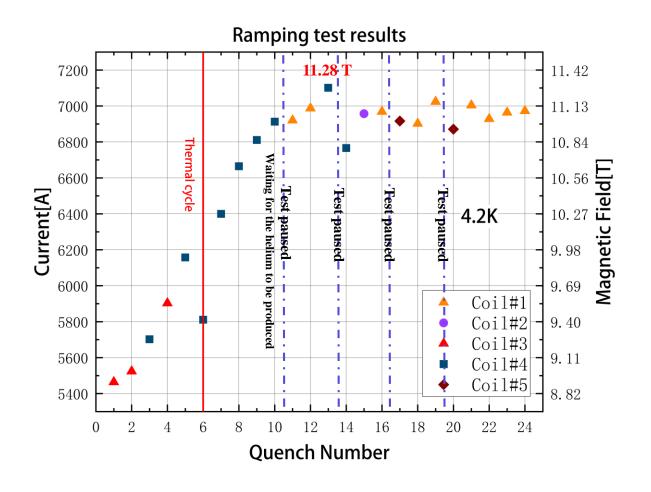
varistor

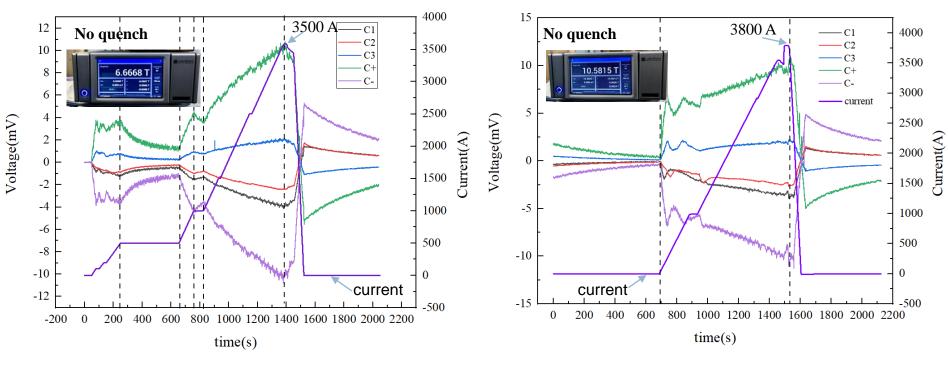

The IGBT in the CLIQ system

The capacitance

- CLIQ + varistor is adopted to accelerate the propagation of quench in the magnet. >
- The capacitance: 30 mF; the charging voltage: 500 V; the hotspot temperature is about 224 K at 7850 A. \geq

Fabrication of LPF3


The Nb₃Sn coils for LPF3


The HTS insert coils for LPF3

- The 1st preliminary test carried out in the week Sep 3-8 2003. The six Nb₃Sn coils were firstly ramped
- 5 quenches occurred from 9 to 10 T, mainly caused by flux jump, but with an encouraging upward trend
- The performance test of LPF3 was continued in the last three weeks after the thermal cycle. A maximum field of 11.28 T has been reached within two apertures. More testing is ongoing.

- The preliminary test of Block-type insert coil was carried out under self-field, 5 T and 9 T. The coil has been subjected to a maximum current of over 3790 A (the designed current), with no quenches observed.
- As commonly observed in NI coils, a charging delay between the power supply current and generated magnetic field has also been found in this insert coil.
- Due to the significant heat generated by the current leads, the test had to be stopped as soon as the current reached ~3800 A. The field provided by the HTS insert coil is 1.91 T @ self-field, 1.67 T @ 5 T and 1.58 T @ 9 T, respectively.

Test result of Block-type insert coil under 5 T

Test result of Block-type insert coil under 9 T

Summary

- 1. Based on the experiences mastered in the LPF1 series magnets, a 16-T high field dipole magnet named LPF3 has been designed, fabricated and is in the performance test process.
- 2. The preliminary test of Nb_3Sn coils showed promising results, with a maximum field of 11.28 T @ 7101 A & 4.2 K reached within two apertures. Futher training tests will be carried out soon.
- 3. The preliminary test of Block-type insert coil was carried out under self-field, 5 T and 9 T, respectively. The coil has been subjected to a maximum current of 3800 A, with no quenches observed. A charging delay between the power supply current and generated magnetic field was found during the ramping test. More tests would also be performed to investigate the electrical-magnetic behavior of this coil soon.

Welcome to visit Qingjin's lab!

中国科学院高能物理研究所 Institute of High Energy Physics, CAS

