

Quench protection of the PSI Subscale Stress-managed common-coil magnet

E. Ravaioli (CERN)

Thanks to A. Verweij, M. Wozniak (CERN), B. Auchmann, D. Martins Araujo (PSI)

Meeting on the PSI Subscale Stress-managed common-coil test campaign 14 December 2023

Quench protection based on EE

- Baseline used for most tests
- Goal: Assure the safe magnet protection while testing magnet performance

Quench protection based on ESC

- Preliminary results
- Goal: Test the ESC method performance (of course without destroying the coil)

Quench protection based on energy extraction (EE)

For R_EE=110 m Ω (i.e. peak voltage across the magnet of 1 kV) and quench detection+validation+trigger time of 7 ms

Quench detection

At I_{max}=9166 A, quench in the high field turn: 100 mV reached in 1 ms. 5 ms validation time seems achievable.

The challenge: Quench detection

Quench protection at different current levels

- This magnet is actually quite challenging to protect
- Quench detection and protection seem tight but feasible with 1 kV energy extraction
- Quench detection will be the key
 - At maximum current, proposed targets are 1 ms + 5 ms + 1 ms for quench detection + validation + trigger
 - At lower and medium current levels, increased threshold to avoid spurious triggering because of flux jumps will result in longer quench detection → input needed in order to estimate how critical it is

Quench protection based on EE

- Baseline used for most tests
- Goal: Assure the safe magnet protection while testing magnet performance

Quench protection based on ESC

- Preliminary results
- Goal: Test the ESC method performance (of course without destroying the coil)

Quench protection based on Energy Shift with Coupling (ESC)

ESC working principle

1 Immediate reduction of the transport current

reduces ohmic loss and magneto-resistance

2 Very high dB/dt (~1E2-1E3 T/s)

transfers most/all turns to the normal state

3 Energy shift from magnet coils to auxiliary coils

induced by CLIQ unit and coil resistance increase

Very low hot-spot temperature and voltages to ground

ESC typical transient – Currents

PSI subscale: "Magic" quench of 100% of the coil at t=1+5+1=7 ms

Even an ideal system quenching 100% of the magnet coil in no time is not enough to protect the magnet

ESC coil designs

ESC results

ESC results

Quench protection at different current levels

Example of an ESC transient

- It seems possible to safely test the ESC method on the PSI subscale model
- Possible solutions to limit worst-case hot-spot temperature
 - Design and build voluminous ESC auxiliary coils (~5 times larger than the magnet coils) that can extract 80-90% of the magnet stored energy
 - Accept shorter validation time for these tests (possibly causing more spurious trips)
 - Accept to test only at low-medium current
 - Accept the risk of reaching ~400 K if a training quench occurs right before the test

Annex

Magnet parameters

PSI subscale stress-managed common coil magnet parameters	
Maximum current, I _{max}	9166 A
Peak field on the conductor at I _{max}	5.84 T
Operating temperature	4.5 K
Differential inductance per unit length at I _{max}	0.00126 H/m
Magnetic length	0.310 m
Superconductor	Nb ₃ Sn
Number of strands	11
Strand diameter	0.6 mm
Cu/no-Cu ratio	1.17
Insulation thickness	0.15 mm
RRR (assumed)	100

