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Revised Title(s)

One (good?) idea and way more

challenges...Lessons learned...we now

know what to do next...
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Dynamics 1n biological systems

o

Protein dynamics

§ (folding/unfolding)

Binding dynamics
(interaction proteomics)

Proteome dynamics
B8 (changes in disease state)
B8 (changes with age!)

PLoS Computational Biology, Artist’s rendition



Time scales in protein and
proteome dynamics

Protein dynamics generally ms

(folding/unfolding)

Barrier crossing where
ultra fast motions

ps-fs might be important
(quantum effects?)

FSU

Free energy

Folding coordinate

Proteome dynamics Coherent control of

(hours to months) Rhodopsin isometrization



Ultratast dynamics

My introduction to ultrafast science
Complete sampling of structure state at
time point ~/ fsle [ dt] /£ «

fs optical pulse

Photocathode

| Anode-pinhole
| Magnetic Ie‘ns
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fs excitation pulse
Diffraction pattern-screen

Can do pump probe for time resolved studies

Sciaini and Miller. (2011) Rep. Peog. Phys



Free Electron Lasers (FELs) produce
fs pulses of coherent x-rays
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The problem

Ultrafast science generally requires irreversible sampling
of the system dynamics

Develop skills for high throughput sampling of analytes
(crystals) under study

Dynamics studies invoke another level of complexity;
t, background



Crystals in prescribed

positions

Crystals are happy
Translation stage,

detector read out

are fast

Sampling efficiency is
10 microns improved

This idea is suitable for dynamics because it allows t, diffraction orders
to be recorded.

How to assemble this array?-what support material if recording in
transmission



Assembly of the array

Thought experiments:
Grow crystals iz situ and diffract
Position crystals in prescribed positions using robotics

Design a “smart surface to fish out desired crystals from a suspension
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hydrophilic

N

hydrophobic
Enhancing the liquid pinning potential

o

Stabilized contacts for analyte






Wetting 1s very specific

A: water

B: Qdot solution. Intensities are
identical

C: ~3 pm beads suspension. 0.1%
nonspecific wetting.

Aspect ratio of 20
Substrate is silicon (etched by Reactive Ion Etching; I~ plasma)



The idea 1s to have the liquid

localization selt assemble the crystal

array
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50 micron lysozyme crystals




Enhancing liquid pinning potential

results 1n self assembly
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Laser scatter, 543
Rhodamine fluorescence, filter cube

Film thickness= 3 microns
Well diameter=100 microns
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Can make the wells deeper
(carrying larger crystals)

m Contact line instability and wells with
Ty

sharp walls allow consistent

volumes to be captured
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Aspect ratio
10
200 micron

diameter

Rhodamine fluorescence, filter cube

Zarrine-afsar et al (2011) Anal Chem



Characterization of capture by
beads carrying FITC label

Mixture
Varying sizes, densities, available



Can make the wells smaller
(carrying smaller crystals)

Chip with
microndlls

Chipfilled  [PEECCEE

4 micron wells, beads are 2.9 micron



Size exclusion is available
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| Can thlS be adapted to crystals?

well size ~ crystal size

In adapting the scheme to crystals

(I) Buoyancy is an issue

(II) Beads are homogeneous 1n size; crystals may not be

(IIT) Beads are suspended in low salt; evaporation forms salt crystals

(IV) Crystal morphologies could be complicating; do they ‘roll” or stick to
surfacer

(V) Interactions with the surface may result in preferred orientations that can
limit sampling of reciprocal space

(VI) Solid support should have small background (exposure in transmission)



What i1s needed

(D) A support transparent to x-rays (low background)
(II) A surface that collects little water (reduce absorption)

(IIT) A surface that has roughness to induce some randomness to flat

crystals

Multiple ways to satisfy these conditions with silicon technology
yet as a proof-of-principle we followed another approach
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Silicon mesh custom to size of crystals
with polyimide support sprinkled with
glass beads of varying sizes to create
roughness



Role of hydrophilicity
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Hydrophilicity of glass on hydrophobic polyimide creates pinning
for lysozyme storage solution that results in significant single crystals
per well

Window size is matched to average crystal size in the batch



Role of surface roughness

Induces some degree of randomness in crystal orientations
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Chip holder to satisty evaporation
issues and interfacing

Saturate the environment
With storage solution
| vapour pressure

also underscores the
j significance of randomness




le assessment of

princip

Proof-of-

rientations

crystal o
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No. of occurrences No. of occurrences

No. of occurrences

Proot-of-principle assessment of
crystal orientations
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Diffraction




Diffraction statistics

Ferritin

Lysozyme

Data collection
Space group
Unit-cell parameters (A)
X-ray source

Wavelength (A)

Resolution (A)

RmcrgeT

(Ilo(1))

Completeness (%)

Multiplicity

Refinement

Resolution (13&)

R wo rk/ R free

No. of atoms
Protein
Ligand/ion
Water

B factors (1&3)
Protein
Ligand/ion
Water

R.m.s. deviations
Bond lengths (A)
Bond angles (°)

F432

a=h=¢=1825

Swiss Light Source,
beamline X10SA

1.00

10-2.5

0.13 (0.38)

B.0:(3.3)

98.6 (98.8)

42 (4.4)

41.88-2.5
0.19/0.24

1877
1 [Cd*]
44

239
224
233

0.01
112

P4;2,2

a=h=T91,¢c=385

Swiss Light Source,
beamline X10SA

1.00

10-2.3

0.19 (0.31)

5.0 (2.8)

92.0 (91.1)

3.4 (3.1)

69-2.3
0.217/0.256

1001
1 [CI]
29

292
294
27.7

0.01
0.94
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Collimating 1s necessary
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L.essons learned

(D) Chip holder is too bulky

(II) Beads are strongly absorbing
(IIT) There 1s too much liquid that causes some crystals to swim!

Solutions:

(D) Go all silicon, make the chip thin (60-80 nm silicon oxide support)
(II) Include drainage holes, and use centrifugation to get rid of excess
liquid

(I1I) Pump 1in He

(IV) Enclose in He chamber

(V) Move away from beads; fuse small silicon, carbide chunks to surface



Moving forward

Online sample delivery system

Make a sandwich




Online delivery
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“I'ruly” nanocrystallography

2 micron wells and 900 nm beads
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Chip diffuses the ‘shockwaves’ expected from FELspul
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