

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Jörg Raabe

How to Find Samples: Precise Positioning and Complementary Microscopy Techniques

PSI, 20.11.2012

- Challenges
- Sample positioning
- Focusing
- Finding samples

- Mechanical Stability, 100Hz -> 10ms positioning time high resonance frequencies necessary
- Thermal stability:

1°C temperature change result in 1µm length change for 10cm of typical construction material

- PolLux: Scanning transmission x-ray microscopy (STXM)
- OMNY: Test setup & Design of UHV/Cryo Version

OMNY Test Setup

OMNY Test Setup

Limited to atmospheric pressure and room temperature

Position of sample to optics measured by laser interferometry and actively stabilized

Position stability routinely reached: 8 nm (stdev) horizontally, 3 nm (stdev) vertically

ightarrow high resolution imaging should be possible

Further information can be found in Mirko Holler, Joerg Raabe, Ana Diaz, Manuel Guizar-Sicairos, Christoph Quitmann, Andreas Menzel, and Oliver Bunk, "An Instrument for 3D X-ray Nano-Imaging", Review of Scientific Instruments, accepted for publication.

OMNY Test Setup – 2D imaging

2D lithographic test object:

concentric circles of hydrogen silsesquioxane HSQ, at two height levels subsequently coated with a conformal layer of iridium of about 17 nm in thickness by atomic layer deposition.

Phase of the reconstructed test structures (radians) at a field of view of $3x3 \ \mu m^2$, reconstructed to 6 nm pixel size FZP illumination, X-ray beam Ø 2 μm

Thanks to Joan Vila-Comamala for sample preparation at LMN, PSI

Metrology for OMNY

For high resolution imaging accurate information on the position of the sample in respect to the beam required i.e. the relative position of the sample to the Fresnel zone plate

Required:

- sub-nm resolution at high bandwidth
- exteroceptive: include thermal drifts in the measurement

Heterodyne laser interferometry

- Resolution: 0.3 nm
- Noise: 2 nm (stdev)
- non-contact, long range
- linear scale

Metrology for OMNY: Tracking interferometer

Wobble motion is detected by laser beam deflection with

a position sensitive detector (PSD)

Closed loop: interferometer tracks the reference sphere

and keeps pointing a its center

 \rightarrow interferometer data at all rotation angles

pat. pend.

• Refractive optics

Ex situ:

Measuring Positions of particles with respect to reference

marks

In situ:

Integrate complementary microscope into the endstation:

- TEM
- SEM
- Visible + x-ray microscope

Objective lens of a TEM

http://www.microscopy.ethz.ch

Omicron: Modified Zeiss Gemini

http://www.tescan.com

- Stable and precise positioning System with exteroceptive metrology system
- Complementary in situ microscopy
- Cryo sample transfer

Thanks to the OMNY Team:

- Mirko Holler
- Markus Vitins
- Hansueli Walther
- Thierry Lachat