Hit rate and sample consumption for samples in liquid water.

Daniel DePonte

Hit Rate

FEL rep rate x probability of hitting a diffracting object (hits/s)

Fraction of X-ray pulses from which a diffraction pattern is recorded (%)

dripping vs jetting

iphone driven breakup

flow focusing

A. M. Ganan-Calvo Phys Rev Lett 80 p285 (1998)

gas dynamic nozzle

EVO MA25 11.86 kV CZ BSD 64 Pa Chamber = ZEISS WD = 5.0 mm 233 X

Aerodynamic lens

Aerodynamic lens

1D compression high sample consumption high hit rate variable degree of hydration lower gas load

Aerodynamic lens

Aerolens Dusting

FLASH dusting Spring 2012

ELECTRON MICROSCOPY

Pa 1

Pa 1 = 233.6 nm

Pb 1 = 341.0 °

Pa R1

Will it diffract?

SONICC synchrotron

Cathepsin B

DLS Video Tracking

Hit Rates

I4% RC_{vir} in sponge phase (CXI, jet)
I% PSI (CXI, jet)
I0% PSII (CXI, jet)
I0% catB (CXI, jet)
40% Mimi (AMO, lens)
2% (FLASH, lens)
30% maximum possible (single)

Sample consumption = flow rate x concentration x hits needed/hit rate

Sample consumption = flow rate x conc x hits needed / hit rate

> Approximately: 100µl/min Rayleigh jet 1-15 µl/min for PSI with PEG 1 µl/min for a ~1µm jet 0.1µm/min for DOD 120Hz

Drop on Demand

Microfab Technologies Inc.

Complex dripping

DePonte, Weierstall, Doak ASU 2007

Sample consumption = flow rate x conc x hits needed / hit rate

small crystals $F \times S \otimes L$ single shot => partials

Sample homogeneity

Mimi at FLASH 2011

