Ultrafast oscillator and kHz amplifiers for use in FELs and Synchrotrons: meeting performance and reliability demands

11/11/2012

- Application requirements (laser industry, point of view)
- Highly-stable, reliable & flexible oscillator design: Vitara
- High power/energy & stable amplifier configurations: Legend Elite HE+
- Supporting large-scale installation

Coherent installations at FEL/accelerator facilities

Examples: LCLS at SLAC - Stanford

• FEL Photo-injection

- Customized Legend Elite amplifier (1 ps, 760 nm)
 - Home-built MPA to 20 mJ/120 Hz
 - Chirped to 3-5 ps at compression
 - THG (~ 2 mJ) at 253 nm (for maximum QE)
 - Spatial mask imaged on Cu photocathode at ~ tens of μJ
- Experiment (hutches)
 - Five Legend Elite USPs seeded by Vitara, most with home MPAs to 20-25 mJ compressed at 120 Hz
 - Four OPAs
 - THz generation via 800 nm (Ti:S) / 1.5 micron (OPA) in LiNbO / DAST using optical rectification method
- Home-built timing synchronization with Vitara actuator slaved to LCLS electronics

Examples: LCLS at SLAC - Stanford

- Ti:sapphire
 - 400 nm, 266 nm & 200 nm: BBO/nonlinear upconversion
- OPA
 - UV to Visible to IR (240 nm to 2600 nm): signal & idler harmonics & SFG
 - mid IR (4 micron to 18 micron): DFG with signal & idler in GaAs
- THz
 - tilted pulse front optical rectification, organic crystals, plasma generation
- Deep UV
 - Gas target HHG in development

Examples: FERMI at Elettra - Sincrotrone di Trieste

- FEL Photo-injection
 - Hidra Elite amplifier (780 nm, 18 mJ at 50 Hz 100 fs)
 - Regen+ 2 stage 2PA
- FEL seeding
 - Legend Elite amplifier + Opera Solo OPA (240 nm output)
- Home-built timing synchronization

Key parameters/relevance

- Most "amplified" UF applications require non linear devices (HG, OPA, HFC, EUV, THz, attosecond)
- Power & overall stability of the laser are key for time-efficient, accurate, high S/N ratio data generation
- Photo-injection:
 - Beam spatial and temporal profile
 - Pulse to pulse stability
 - THG pulse energy (> 2-3 mJ) & conversion efficiency
- FEL Seeding:
 - Tuneability (via OPA) around 240 nm
 - Wavelength and bandwidth stability
- Experiment:
 - Standard Pump and probe requirements from 200 nm to 20 micron, up to THz (+ synchronization)

Vitara flexible & hands-off UF oscillator (2011)

- Broadband: 125 nm
- Tunable: 110 nm
- Computer-controlled
- Actively and passively stabilized
- Sealed & clean-room built
- Flexible: rep rate, CEP, external synchronization

Vitara: designed and built for stability

Superior Reliability & Performance

COMPANY CONFIDENTIAL

Highly Accelerated Stress Screening (HASS)

- Production Vitara lasers are subjected to 10 hours of stringent stress testing
 - Temperature cycling from -40°C to +60°C
 - Three axis vibrations cycles to 10G

Lifetime example

COMPANY CONFIDENTIAL

Legend Elite and Libra: Power

Le N	egend lodel	Со	nfiguration	Evolution pump(s)	cooling	Ener (at 1k	gy Hz)	CEP comp?	Pulse duration (fs)
Libra		Regen (1-box)		15	Water	1mJ		No	50 /100
Lib	Libra HE Re		gen (1-box)	30	Water	4mJ		No	50/100
	HE+		Regen	15	Water	1mJ		Yes	25/35/130/ps
1	HE+	Regen		30	Water	4mJ		Yes	25/35/130/ps
	HE+		Regen	45	TEC	5mJ		Yes	25/35/130/ps
Du	o HE+	Regen+SPA		HE	TEC	8mJ		Yes	25/40/130/ps
Du	o HE+	E+ Regen+SP		30+HE	TEC	10mJ		Yes	25/40/130/ps
Du	o HE+	Regen+SPA		45+HE	TEC	12mJ		Yes	40/130/ps
			Regen + I (1I	Regen + Power Amp (1kHz)		Output Power [W]		12	
			Single-pass			8.0		1.1-1.2	
			Double-pass			10.2	-	1.5-1.6	

• SPA approach minimizes thermal aberration of amplified pulses

12 mJ/1 kHz Legend Elite HP+: Pump enabled

- Unique high-energy pump laser provides foundation for high power
- Next step: thermal management and stable design

- Most FELs require laser operation at 10-100 Hz level
- Amplified TiS ultrafast systems architecture:
 - 5-20 Hz: flash lamp pumped Q-switched green laser
 - ~ 100 Hz: QCW diode-pumped Q-switched green laser
 - 1-10 kHz: CW diode or CW flashlamp-pumped Q-switched green laser
 - ~ 100 kHz: CW diode-pumped, CW green laser
- CW diode pumping provides inherently lower noise to the green pump and amplifier than any other approach
- Trade off is energy/pulse Vs. average power
 - 100 Hz/100 mJ $\leftarrow \rightarrow$ 1 kHz/10 mJ

Pump and regenerative amplifier stability

Typical Evolution-30 Power Stability

Typical Evolution-HE Power Stability

COHERENT

Slab rod design: managing high power

Advanced Rod Housing

- Enhanced TE-cooling rectangular cross section rod:
 - better heat management
 - better thermal contact with mount

Legend Elite Duo HE+: The CEP lesson

- All Legend Elite HE+ benefits from CEP (Carrier to Envelope Phase) stabilization expertise
 - All HE+ models are CEP-ready
- Robust monolithic stretcher/compressor mounts and optics

Pre-CEP style

CEP re-design

Other view

Legend Elite HE +: OPA noise and stability

OPA FHS 2 min Shot-to-Shot Stability (340 nm)

OPA SHS 2 min Shot-to-Shot Stability (680 nm)

OPA DFG noise and stability at 3.5 micron

White Light continuum stability: Libra HE

COHERENT. Superior Reliability & Performance

COMPANY CONFIDENTIAL

Lasers and beam lines: uptime and support optimization

Support strategy - rationale

- In-depth, customized user service training
 - At Coherent Santa Clara facility
 - → Enables expert in-house system maintenance/service, minimizes downtime
- Advanced replacement laser (sub)systems
 - Applicable typically to non-field serviceable systems (clean-room mftg. items)
 - Two-day shipment from regional warehouse with APlus agreement
 - → Minimize downtime, easy system replacement
- Incentives towards user purchase of recommended stock parts
 - Coherent customizes recommended spare part list at discounted price
 - → Cost/uptime benefit
- Warranty extensions, tailored to cover all Coherent lasers at facility
 - → Covers seamlessly parts at a predictable & budgeted user cost
- Preventive maintenance plan
 - Coherent personnel system inspection to ensure above-spec performance
 - \rightarrow System re-optimization, uncover possible degradation paths

- Requirements for power/energy and stability are common to most UF non-linear applications
- FEL/particle beam facilities bring in additional challenging demands:
 - Synchronization
 - Non-standard specification
 - Uptime/maintenance requirement
- Addressing these requirements satisfies also bulk of other UF applications, with benefits for the UF user community at large

