Structural Dynamics in Hydrogen-Bonded and Transition-Metal Systems

Max Planck Research Department for Structural Dynamics at the University of Hamburg

& Center for Free Electron Laser Science

SwissFEL Photonics Pump Laser Workshop

16.11.2012

SCIENCE

Countesy: nammeskrause architekten

Elucidating chemical reaction pathways and intermediates in solution and at interfaces via time-resolved X-ray Absorption and Photoemission Spectroscopy

- energy levels & coupling constants
- charge distribution & bonding
- spin-state-dependent effects

How fast is SwissFEL?

or what is the timing jitter...

Transient X-ray Spectroscopic Methods

X-ray Absorption Spectroscopy (XAS) X-ray Absorption Spectroscopy (XES) Resonant Inelastic X-ray Scattering (RIXS)

- Photon-only \rightarrow no worries about space charge, sample charging, laser field streaking
- Moderate to no vacuum requirements

Photoemission Spectroscopy (PES)

- Efficient & atom-specific probe for surface chemistry
- Depth-dependence of excess kinetic energy uniquely suite for interface chemistry
- Angle-resolved PES delivers new insights into anisotropic effects in chemical reactions

inter

Research Objectives

> Solute Dynamics

Liquid-Phase Chemistry

 $OCIO(X^{2}B_{1}) + h\nu \rightarrow CIO(^{2}\Pi) + O(^{3}P_{g})$ $OCIO(X^{2}B_{1}) + h\nu \rightarrow CI(^{2}P_{u}) + O_{2}(^{3}\Sigma_{g}^{-})$ $OCIO(X^{2}B_{1}) + h\nu \rightarrow CI(^{2}P_{u}) + O_{2}(^{1}\Delta_{g})$ $OCIO(X^{2}B_{1}) + h\nu \rightarrow CIOO \rightarrow CI(^{2}P_{u}) + O_{2}(^{3}\Sigma_{g}^{-})$

- O-H stretching modes (3400cm⁻¹)
- O-H bending mode (1650cm⁻¹)
- Librations (300 to 1500 cm⁻¹)
- Slower intermolecular modes (< 300cm⁻¹)
- Intermolecular coupling: dephasing, spectral diffusion, H-bond cleavage ~0.05 to several ps

Microscopic dynamics of water over a wide range of timescales

- ~ 0.03 to 0.2ps
- < 0.2ps

~ 0.01ps

~ 0.02ps

Spectral Features in Water and Phases of Ice

- Pre-edge height seems not to be unique to HB strength but the spectral position is
- Time-resolved x-ray probe measurements reproduce the same spectral behavior

Ultrafast Soft X-ray Spectroscopy on H₂O

- Thermalization
 → Isochoric Heating
- Adiabatic Expansion
- Pressure Dependence?

Wernet et al., APA **92**, 511 ('08) Huse et al. PCCP **11**, 3951 ('09) Wen et al. JCP **131**, 234505 ('09)

Transient Soft X-ray Spectroscopy of Solutes

 Huse et al. PCCP 11, 3951 (2009)

 Wen et al. JCP 131, 234505 (2009)

 Huse et al. JACS 132, 6809 (2010)

 Huse et al. JPCL 2, 880 (2011)

 Van Kuiken et al. JPCL 3, 1695 (2012)

 Cho et al. Faraday Discuss. 157, 463 (2012)

Probing the Metal *d***-Orbitals**

Trading Spin for Orbital Angular Momentum

Huse et al. JPCL 2, 880 (2011)

Advantages:

- Theory is quite matured
- No multiplet effects due to weaker spin orbit coupling
- Increased solvent
 transmission
- Complementary information on metal-ligand interactions
- Prospect of laser-based femtosecond X-ray spectroscopy and beyond

Fe^{II}(bpy)₃ in Water

- Ab inito DFT calculations, only energy axis has been shifted
- Bound-bound N-1s core-level transitions only (using ORCA)

Core-Level Sensitivity to Valence Charge

- Core-level transition shifts due to core-level shift
- Core-level energy highly sensitive to amount of valence charge

García-Lastra et al. *JCP* **133**, 151103

Core-Level Sensitivity to Valence Charge

 Spectral gear box amplifies spectral shifts in addition to valence charge changes on target atom

García-Lastra et al. *JCP* **133**, 151103

High-Spin Valence Charge Distribution

Ground-state HOMOs

High-Spin Valence Charge Distribution

High-Spin Valence Charge Distribution

Strong M-L orbital mixing \rightarrow Structural change \rightarrow ???

Reaction intermediates in (metal)organic chemistry

- Unique characterization of transient valence charge density
 - Atomic specificity
 - Spin-sensitivity

Solute-Water Interactions

Enzymatic Activity and Cooperativity

Tunable laser system (highly robust and reliable)

- Electronic excitation triggers over broad range with $\lambda > 200$ nm
- Mid-infrared generation for vibrational excitations with λ < 20um
- Intense THz pulses reaching up to $15THz \rightarrow$ needs insertion device

Carrier envelope stability (or better control) ?

- Coherent excitations at sub-cycle resolution
- Access to phase-sensitive phenomena
- Controlled excitations

Laser pulse requirements

- 10fs (UV-Vis) to single-cylce (THz)
- 10s of uJ from UV to THz

Final Considerations & Summary

- Manpower and expertise will determine user involvement. Undogmatic approach desirable
- Large tunability will ensure broad application spectrum
- CEP control will drive new science, use of synergy effects to solve timing issues
- X-ray science provides unique ways of studying matter beyond electronic excitations
- What about 'Two-color' 2DFT spectroscopy?

Robert W. Schoenlein Munira Khalil & Ben van Kuiken Frank de Groot Hana Cho, Tae Kyu Kim, Matt Strader Lindsey Jamula & Jim McCusker

Haidan Wen & Aaron Lindenberg Dennis Nordlund & Anders Nilsson Erzsi Szilagyi, Dan Daranciang & Tim Miller

Final Considerations & Summary

- Manpower and expertise will determine user involvement. Undogmatic approach desirable
- Large tunability will ensure broad application spectrum
- CEP control will drive new science, use synergy effects to solve timing scres
- X-ray science provides unque ways of studying matter reyond electronic excitations
- > What about Two-color' 2DFT spectroscopy?

Normal Providence in the second secon

Robert W. Schoenlein Munira Khalil & Ben van Kuiken Frank de Groot Hana Cho, Tae Kyu Kim, Matt Strader Lindsey Jamula & Jim McCusker

Haidan Wen & Aaron Lindenberg Dennis Nordlund & Anders Nilsson Erzsi Szilagyi, Dan Daranciang & Tim Miller