THz Control of Complex Oxides Michael Först

Max Planck Research Group for Structural Dynamics University of Hamburg Centre for Free Electron Laser Science

2012 SwissFEL Photonics "Pump Laser Workshop"

Phase diagram of complex oxides

Spectrum of collective excitations

Basov, Rev. Mod. Phys. Ament, Rev. Mod. Phys.

> Optical parametric amplifiers: VIS to mid-IR wavelengths

Optical parametric amplifiers: VIS to mid-IR wavelengths

THz and mid-IR light sources

Optical rectification in LiNbO3

Table-top pump & probe techniques

- Transient optical conductivity from THz to visible spectrum
- Time-resolved magneto-optics (e.g. MOKE)
- Time-resolved photo-emission (e.g., ARPES)

- Investigate the microscopic arrangement of atoms, charges, orbitals, spins, ... within matter
- Correlate the structure to the macroscopic physical/chemical (functional) properties

X-ray diffraction

Structural dynamics in condensed matter

> Explore

- the reaction of a system to external (optical) stimulation
- the relevant mechanisms and time scales
- how to control the functional properties

Goal: resolve the atomic spatial scale *and* the inherent temporal scale of quantum dynamics

How to probe phase state dynamics?

Diffraction techniques at FELs (femtosecond time-resolved)

• Femtosecond Nanocrystallography -

→ first experiments done(H. Chapman)

o Resonant Inelastic X-ray Scattering → future?
 (J. Hill)

Vibrationally induced phase transitions

How does the optical pulse drive the lattice?

Lattice control of magnetism

• Resonantly driven IR-active stretching mode couples to Raman-active Jahn-Teller mode

• Melting of AFM order measured via RSXD at LCLS

(1)

SCIENCE

Transient superconductivity in stripe-ordered cuprate

Stripe order pinned by LTT distortion

D. Fausti et al., Science 331, 189 (2011)

Probing in the THz domain

SCIENCE

D. Fausti et al., Science 331, 189 (2011)

o Josephson plasma edge → interlayer phase coherence

La_{1.8-x}Eu_{0.2}Sr_xCuO₄

Probing stripe order via resonant soft X-ray diffraction

Time Delay (ps)

Complete charge order melting on sub-ps time scale → no coexistence with superconductivity

M. Först, R. Tobey et al., unpublished

Probing LTT distortion via resonant soft X-ray diffraction

La_{1.875}Ba_{0.125}CuO₄

Weak and slow relaxation

➔ decoupling of LTT distortion and stripe order

M. Först, R. Tobey et al., unpublished

Requirements to the pump laser

- > minimum requirements (from experiences at the LCLS)
 - >10 µJ energy/pulse
 - ~ mJ/cm² excitation fluences
 - reliable tunability and spectral bandwidth
 - high power and pointing stability over 1 week of beamtime
 - synchronization to the FEL < 250 fs
 - collinear alignment with the FEL beam

Needs for the future

Structural dynamics in condensed matter

> Explore

- o the reaction of a system to external (optical) stimulation
- o the relevant mechanisms and time scales

Goal: resolve the atomic spatial scale and the inherent temporal scale of quantum dynamics

Needs/wishes for the future

Needs/wishes for the future

Needs/wishes for the future

Bridge the 3-15 THz gap

Access to:

- further phonon modes
 in transition metal oxides
- Josephson (bi-layer) plasma modes in cuprates

undulator based

other approaches?

Thanks to...

(11

SCIENCE

•••

> H. Bromberger, V. Khanna, R. Mankowsky, C. Manzoni, S. Kaiser, H. Ehrke, A.L. Cavalieri,

T. Garl, A. Caviglia, A. Cavalleri	Max-Planck Research Group for Structural Dynamics, University of Hamburg
R.I. Tobey, S.B. Wilkins, J.P. Hill	Physics Division, Brookhaven National Laboratory
≻ S. Wall	ECFO Barcelona
➢ M. Gensch	Helmholtz-Zentrum Dresden Rossendorf
S.S. Dhesi, S. Cavill	Diamond Light Source
> W.F. Schlotter , J.J. Turner, M.P. Minit	ti, A.R. Fry, D.M. Fritz, H.T. Lemke, D. Zhu, M. Chollet
	Linac Coherent Light Source, SLAC National Accelerator Laboratory
Y.D. Chuang	Advanced Light Source, Lawrence Berkeley Laboratory
> W.S. Lee, R. Moore	SIMES, SLAC National Accelerator Laboratory and Stanford University
O. Krupin	European XFEL GmbH
S.L. Johnson	Eidgenössische Technische Hochschule Zürich
> R. Merlin	University of Michigan
≻ M. Trigo	PULSE, SLAC National Accelerator Laboratory
J.C. Mitchell	Materials Science Division, Argonne National Laboratory
Y. Tomioka	Correlated Electron Engineering Group, AIST, Tsukuba,
Y. Tokura	Department of Applied Physics, University of Tokyo
R. Scherwitzl, JM. Triscone	University of Geneva
➢ V. Scagnoli	Swiss Light Source, Paul Scherrer Institut

