Ultrafast dynamics in strongly correlated systems: from melting to control

Steve Johnson, ETHZ

Outline

- Scientific goal: fast control of technologically relevant material properties
- Thermodynamic vs. dynamic control
- Pump laser wish list

Structure and symmetry

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Phase changes

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Strongly correlated systems

[Doiron-Leyraud et al. Nature 447, 565 (2007)]

[Hwang et al. PRB 52, 15046 (1995)]

- Electronic correlations important
- Strong phase competition

Domain switching

Giant Magnetoresistance (GMR)

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Multiferroics

[S. W. Cheong and M. Mostovoy, Nat. Mat. 6, p. 13 (2007)]

- Coexistence of ferroelectricity with magnetic order
- Magnetic-induced multiferroicity: strong coupling of magnetism and ferroelectricity

[M. Bibes & A. Barthélémy, Nat. Mat. 7, p. 425 (2008)]

 Could lead to devices that combine advantages of magnetic & ferroelectric memory

Basic questions

- How to change phase / domains?
- How fast is this possible?
- Is this reversible?

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Atomic structure

- How and how fast can we rearrange atoms?
- Small perturbations: phonon frequencies
 - Acoustic: < several THz</p>
 - Optical: 1 40 THz (1 ps to 25 fs)

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Magnetic structure

- How and how fast can we rearrange spins?
- Small perturbations: magnon/spinon frequencies
 - 0 70 THz (14 fs)

Control: thermodynamics vs. dynamics

- Can access by changing state variables (P,T,V)
- Have to wait for ergodicity
- Can use partial thermalization of subsystems

Control: thermodynamics vs. dynamics

- Dynamics: coherent control over specific coordinates
- Nearly reversible
- No need for ergodicity

SwissFEL Pump Laser Workshop

Control: thermodynamics vs. dynamics

- General pump, must just give energy
- Not very flexible
- Easier to increase entropy than to decrease

- Requires specific stimulus (pump)
- Not as much wasted energy
- Does not change entropy much

- Temperature-induced magnetic phase transition
- Long-range reordering of spins on Cu

Friday, November 16, 2012

ЕТН

SwissFEL Pump Laser Workshop

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Pump-probe experiment**

- Near-IR pulse can rapidly "heat" via above bandgap excitation
- Resonant x-ray diffraction as a probe of the magnetic ordering wave-vector

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Phase transition

Before excitation

Optical excitation pushes spins into ICM phase

[Johnson et al, PRL 108, 037203 (2012)]

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Phase transition

Before excitation

After excitation

Optical excitation pushes spins into ICM phase

[Johnson et al, PRL 108, 037203 (2012)]

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Phase transition onset

[Johnson et al, PRL 108, 037203 (2012)]

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Phase transition onset

[Johnson et al, PRL 108, 037203 (2012)]

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

EITH Eidgenössische Technische Hachschule Zürich

Swiss Federal Institute of Technology Zurich

Phase transition onset

"Delay" between disorder and onset of phase transition

Minimum value of ~ 400 fs

[Johnson et al, PRL 108, 037203 (2012)]

Friday, November 16, 2012

SwissFEL Pump Laser Workshop

(b)

Swiss Federal Institute of Technology Zurich

Dynamics: THz control?

(g)0 psec C//-a C//-a (h)1.2 psec **C//-**a (i) 2-3.4 psec bC+ (j) 6 psec

[Mochizuki & Nagaosa, PRL **105**, 147202 (2010)]

[Y. Takahashi et al., PRL **101**, 187201 (2008)]

Thursday, July 12, 2012

Pump wishes

- In optical and near-IR range, very short pulses (~ 10 fs)
 - electronic heating
 - impulsive Raman excitations

 mid-/far-infrared (5-300 microns), highly tunable, multiplecycle CEP stable pulses

[lu3]m

- phase stability relevant for time resolution
- resonant excitation
- bandwidth material dependent (1% to 30%)

ω [THz]

Pump wishes

- Critical parameters:
 - Synchronization/time arrival
 - < 10 fs (FWHM)</pre>
 - Fluence/field strengths
 - For THz "few cycle," > 5 MV/cm
 - 20 mJ/cm² for higher frequencies
 - Flexible focusing, steering options (collinear, noncollinear, tilting)
 - Stability
 - Noise of FEL makes long integration needed for small signals

Acknowledgements

		SLAC:	Stanford:
PSI:		M Hoffmann	WS. Lee
U.Staub (co-PI)	ETHZ:	S de Jona	R. G. Moore
SW. Huang	T. Kubacka	J. Turner	D. Lu
J. Johnson	L. Huber	W. Schlotter	M. Yi
C. Vicario	S. L. Johnson (co-PI)	G. Dakovski	P. Kirchmann
Ch. Hauri		M. Minitti	Z. X. Shen
S. Gruebel		M. Trigo	
P. Beaud	Oxford:		LBNL:
L. Patthey	A. T. Boothroyd	XFEL:	YD. Chuang
R. De Souza (now LANL)	D. Prabhakaran	O. Krupin	P. Denes
V. Scagnoli			D. Doering
E. Vorobeva (now Oxford)			Z. Hussain

Friday, November 16, 2012