SwissFEL Injektor Testanlage Komponenten und strahldynamische Konzepte

- Übersicht SwissFEL Injektor Testanlage
 - Systeme und Komponenten
 - Diagnostik, Messungen
- Strahldynamik für Fussgänger
 - Die wichtigsten Konzepte
 - Emittanzmessung

...das nötigste, um die Messungen morgen zu verstehen.

- Elektronen
- Fokussierung ("Optik")
- Lokalisierung ("Orbit")
- Energie
- Spitzenstrom
- Kleine Emittanz/Strahlgrösse

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität)	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	LaserpulsformMagnet-Schikane (Bunch-Kompressor)	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	Design Elektronenkanone"Emittanzkompensation"	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	LaserpulsformMagnet-Schikane (Bunch-Kompressor)	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	Design Elektronenkanone"Emittanzkompensation"	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Messungen morgen

- Gun setup:
 - Betriebsphase (Schottky-Scan)
 - Energie (Spektrometer)
- Orbit steering (one-to-one)
- Endenergie
- Emittanz (Quadrupol-Scan)
- Bunch-Länge, Slice-Emittanz*

* falls Zeit erlaubt

Teil I

Übersicht SwissFEL Injektor Testanlage

SwissFEL Injektor Testanlage

Momentane Situation:

SwissFEL Injektor Testanlage

Situation vor einem Jahr (Praktikum 2011):

Grundkonzept und Schlüsselkomponenten

Der SwissFEL Injektor ist ein

zweigeteilter Photoinjektor mit anschliessendem Bunch-Kompressor:

- **Zweigeteilter Photoinjektor:** 2.5-Zellen S-Band Kanone getrennt vom S-Band Booster durch ca. 3 m Drift (S-Band = 3 GHz).
- Die Drift erlaubt die Korrektur von Raumladungseffekten durch magnetische Fokussierung ("Emittanzkompensation")
- Der Elektronenpuls wird durch einen 10 ps UV-Laserpuls aus einer Kupferkathode herausgelöst (photo-elektrischer Effekt). Bei noch kürzeren Pulsen würden die Raumladungseffekte zu stark.
- Mit dem Bunch-Kompressor gelingt es, trotzdem noch kürzere Elektronenpulse zu erreichen (0.03–0.2 ps, je nach Ladung). Wegen der Raumladung muss dies bei relativ hoher Energie geschehen.
- Eine harmonische Kavität (X-Band = 12 GHz) vor dem Bunch-Kompressor gibt dem Elektronenpuls das nötige Längsprofil für eine optimale Kompression ("Linearisierung").

SwissFEL Injektor Testanlage

- Elektronenkanone und erste Beschleunigersektion ("erste ~60 m von SwissFEL").
- Test von Komponenten und Prozeduren im Hinblick auf SwissFEL.
- Die Anlage wird später zum definitiven SwissFEL Tunnel transferiert.

SwissFEL Injektor Testanlage

Besuch heute nachmittag! (15:30 – 16:30)

Feierliche Einweihung (24. August 2010)

Bundesrat Didier Burkhalter am Drücker.

Knopf verbunden mit Laser-Verschluss. Nach Betätigung öffnet sich der Laser-Verschluss, Laserlicht trifft auf die Kathode und löst Elektronen heraus (Photoeffekt), welche dann sofort beschleunigt werden.

Strahl auf einem Schirm am Ende der Strahllinie.

Ladungsimpuls nach der Elektronenkanone.

Besuch im Injektor-Tunnel.

SwissFEL Injektor Testanlage

Systeme / Komponenten

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	LaserpulsformMagnet-Schikane (Bunch-Kompressor)	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	Design Elektronenkanone"Emittanzkompensation"	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Elektronenkanone

- Ausrangierte CERN-Kanone "CTF3 Gun Nr. V" (CLIC Test Facility)
- Kurzfristiger Ersatz für sog. "Low-Emittance Gun" (LEG), welche die Erwartungen nicht erfüllen konnte.
- Neue Kupferkathode vom PSI.
- Neue PSI-Kanone (basierend auf LCLS Design) ist in Produktion, Einbau 2013.

Neue Kupferkathode (PSI)

CTF3 Gun Nr. 5 kurz nach der Ankunft am PSI

Instrumentierung im Bereich der Gun

Hochfrequenz-Kavitäten

- Wellenleiter mit Iris-Bestückung (Reduktion der Phasengeschwindigkeit)
- Eine Wanderwelle ("travelling wave") wird durch die Struktur geschickt, der Elektronenbunch wird durch die Welle stetig beschleunigt.

HF Kavitäten im SwissFEL Injektor

Frequenz	3 GHz
Nominaler Gradient	20 MV/m
Nominale HF-Leistung	36.5 MW
Füllzeit	0.9 μs
Impulsfrequenz	100 Hz
Impulslänge	3 µs

Woher kommt die HF-Leistung?

Mikrowellen **Klystron** Verstärker (3 GHz)

	0=011/	1
Klystron Spannung	350 kV	Bandulatas Davamatas
Klystron Strom	300 A	Modulator-Parameter
HF-Frequenz	3 GHz	
Klystron HF-Leistung	45 – 60 MW	HF-Parameter
HF-Pulslänge	4.5 – 1.5 μs	nr-rarameter
Impulsfrequenz	100 Hz	

Magnete (Orbit, Optik)

Magnete (Orbit, Optik)

Dipol

(Ablenkung, festes B=b₀)

 $d^2x/ds^2 = \pm 1/\rho$

Quadrupol

(Fokussierung, $B=b_1 \cdot x$)

 $d^2x/ds^2 = \pm k \cdot x$

"ortsabhängiger Dipol"

Sextupol

(chromatische Korrekturen, $B=b_2 \cdot x^2$)

 $d^2x/ds^2 = \pm k' \cdot x^2$

"ortsabhängiger Quadrupol"

Magnete (Orbit, Optik)

Dipoles **guide** the electons

$$A_{\phi} = -\frac{\rho B}{2}$$

Quadrupoles focus the electors

$$A_s = -\frac{Q}{2} \left(x^2 - y^2 \right)$$

Sextupoles correct first-order chromatic aberations

$$A_s = -\frac{S}{3} \left(x^3 - xy^2 \right)$$

Linac: praktisch nur Quadrupole von Bedeutung!

Schwingungen um Sollorbit: **Betatron-Oszillationen**Auch in Linearbeschleunigern von Bedeutung!

Magnete im SwissFEL Injektor

Solenoid:

Dipol:

Quadrupol:

Fokussierung/Defokussierung (Optik)

Steuermagnet (Dipol):
Orbit-Korrektur

Bunch-Kompressor: Elemente

Bunch-Kompressor

- Dispersion in magnetischer Schikane: zwinge die ersten Elektronen auf eine längere Bahn, die letzten Elektronen auf eine kürzere.
- Nur möglich, falls Energie und Position korreliert sind, d.h. die ersten Elektronen eine tiefere Energie haben als die letzten.
- Die Korrelation wird in der S-Band Beschleunigung erreicht (Steigung der Sinuskurve) und in der X-Band Kavität geglättet (linearisiert).

Funktionsweise eines Bunch-Kompressors (schematisch)

Beschleunigung des Bunches: der Energiegewinn hängt ab von der Position des Bunches im Teilchen.

Bunch-Kompressor (Installation)

p. 27

SwissFEL Injektor Testanlage

Diagnostik / Messungen

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	LaserpulsformMagnet-Schikane (Bunch-Kompressor)	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	 Design Elektronenkanone "Emittanzkompensation" 	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Wie zählen wir die Elektronen?

Ladungsmonitor (Wall Current Monitor)

Signal (ferngesteuertes Oszilloskop).

Die Signalbreite ist gegeben durch die Elektronik, nicht durch die Bunchlänge (zu kurz!).

Der Schottky Scan

Elektronenladung als Funktion der Lasereinschussphase (relativ zur HF-Welle)

(in der Realität drehen wir an der HF-Phase!)

- Ladungsmessung durch Wall Current Monitor
- Bei 2994 MHz, 10° ≈ 9.28 ps

Wo ist der Strahl?

Schirmstation:

BPM = Beam Position Monitor (Strahllagemonitor)

SCR = Screen (Schirmmonitor)

Schirmdurchführung:

Orbitkorrektur

In Ringen (in modifizierter Form auch in Linacs):

- m Korrektormagnete (Dipole) und n Strahllagemonitore (BPM).
- Berechne (oder messe) die (m × n) Response-Matrix A:
- Das Element A_{ki} enthält Orbit am BPM i für "single kick" vom Korrektor k:

Andreas Streun, Vorlesung ETH Zürich

"von Hand": one-to-one steering (morgen!)

Energie- (Impuls-) Messung

fixed screen

Impuls:

$$p = \frac{eBL_{\text{eff}}}{2\sin(\theta/2)}$$

Impulsbreite:

$$\sigma_p^{\rm rms} \approx \frac{dp}{dx} \sigma_x^{\rm rms} = \frac{p_0}{2d \tan(\theta_0/2)} \sigma_x^{\rm rms}$$

Analog bei Endenergie!

Spektrometer-Scan

Spektrometer-Scan

- Spektrometer-Scan mit Schottky-Scan
- Bestätigung, dass Phase von 38° minimale Energieunschärfe ergibt.
- Maximale Energie bei ungefähr 41° (von der Schottky-Kante).

Messung der Bunchlänge

Messung der Bunchlänge

Messung mit "Driftoptik"

- HF Deflektor schert den Strahl vertikal.
- Bunchlänge wird aus der vertikalen Grösse des gescherten Strahl nach einer Kalibration bestimmt.
- Die Kalibration (Konversion mm nach ps)
 geschieht durch Beobachtung der vertikalen
 Verschiebung des Strahls nach einer
 Änderung der Phase des Deflektors.
- Identifikation von vorne und hinten durch Einführung einer kleinen Verzögerung des Lasers durch Einschub eines Silika-Glases in der Laser-Transferlinie.

Bunchlänge und Energie: longitudinaler Phasenraum!

- Beobachtung des vertikal gescherten Strahls im Spektrometer-Arm
- Die HF-Krümmung wird sichtbar!

Bunch-Kompression

 ϕ : HF-Phase in FINSB03/04

 τ : Bunchlänge

- Erste Beobachtung des komprimierten Bunches (18. April 2012, Jaguar-Laser)
- Bunchlänge (rms Gauss-Fit) reduziert von 3.6 ps auf 200 fs.
- BC Winkel 4.07° (R₅₆ = -46.19 mm rad²)

3.6 ps \rightarrow 200 fs (rms)

Thomas Schietinger (SH84) Bruce Lecture, 14 November 2012 p. 40

Teil II

Strahldynamische Konzepte

Strahldynamische Konzepte

- Strahlmomente
- Sigma-Matrix und Strahlellipse
- Transportmatrizen
- Betatron-Schwingungen
- Twiss Parameter
- Beta-Funktion
- Abgleichung der Strahloptik ("Matching")
- Emittanz, Messmethoden

Strahlmomente

Typisches Strahlpaket im SwissFEL Injektor:
 200 pC = 10⁹ Elektronen. Exakte Beschreibung durch
 10⁹ 6D-Vektoren (Positionen und Impulse).

- Einfacher: Beschreibung durch *Momente*.
 - Mathematisch konsistente Beschreibung (lineare Strahldynamik).
 - Physikalisch motiviert durch zentralen Grenzwertsatz (Strahl häufig in einem Gleichgewicht zwischen Rauschen und Dämpfung).
 - Die ersten beiden Momente können relativ einfach gemessen werden.
- Erstes Moment: mittlere Strahlposition (Schwerpunkt) $\langle x \rangle$

"Orbit"

- Messung durch Strahllagemonitor
- Zweites Moment: Strahlbreite (RMS) $\langle (x-\langle x \rangle)^2 \rangle = \langle x^2 \rangle \langle x \rangle^2$ "Optik"
 - Messung mit Schirm oder Drahtabtaster (wire scanner)
- Im folgenden Beschränkung auf eine Dimension (horizontal, x):
 - Position: x
 - Bewegungsrichtung/Impuls: $x' = \frac{dx}{ds}$

(s: Pfadlänge entlang Beschleunigerachse)

Sigma-Matrix und Strahlellipse

• Beschreibung der transversalen Dynamik in einer Dimension (z.B. horizontal, x):

– Ein Teilchen: Vektor
$$X = \begin{pmatrix} x \\ x' \end{pmatrix}$$

- Σ ist symmetrisch und beschreibt eine Ellipse, die Strahlellipse: $X^T \Sigma^{-1} X = 1$
- Die Strahlbreite ist gegeben durch $\sqrt{\sigma_{11}} = \sqrt{\langle x^2
 angle}$
- Allgemeiner: Das durch den Strahl eingenommene Phasenraumvolumen ist gegeben durch die Fläche der Ellipse (Emittanz): $\varepsilon = \sqrt{\det \Sigma}$
- Transport von einem Teilchen oder einer Teilchenverteilung durch den Beschleuniger (i → f) wird durch sogenannte R-Matrizen beschrieben (R = Ray-Tracing):

R-Matrizen-Formalismus: **Karl Brown,** *SLAC-75-rev-4 (1982), SLAC-91-rev-2 (1977).*

Matrix
$$R = \left[egin{array}{cc} R_{11} & R_{12} \\ R_{12} & R_{22} \end{array}
ight]$$

$$X_f = RX_i$$
 (ein Teilchen)

$$\Sigma_f = R\Sigma_i R^T$$
(Teilchenverteilung)

Die Strahlellipse

$$\phi(x,y) = \frac{1}{2\pi} e^{-(x^2 - 2xy + 2y^2)/2}$$

Figure 2: A two-dimensional beam phase ellipse.

Einfache Beispiele von Transportmatrizen

Driftstrecke

- Teilchentransport ohne äussere Kräfte.
- R = ?
- Charakteristisches Element?

Dünner Quadrupolmagnet

- Teilchen werden (in einer Richtung) fokussiert analog zu optischer Linse
- R = ?
- Charakteristisches Element?

Bemerkung: für die Fokussierung von Teilchen braucht es Quadrupol und Drift!

Einfache Beispiele von Transportmatrizen

Driftstrecke

- Teilchentransport ohne äussere Kräfte.
- R = ?
- Charakteristisches Element? $R_{12} = L$

$$R = \left[\begin{array}{cc} 1 & L \\ 0 & 1 \end{array} \right]$$

Dünner Quadrupolmagnet

- Teilchen werden (in einer Richtung) fokussiert analog zu optischer Linse
- R = ?
- Charakteristisches Element? $R_{21} = k = 1/f$
- Hausaufgabe: 4 x 4-Matrix für Quadrupol in x und y?

$$R = \left[\begin{array}{cc} 1 & 0 \\ k & 1 \end{array} \right]$$

$$R = \left[\begin{array}{cc} 1 & 0 \\ -\frac{1}{f} & 1 \end{array} \right]$$

Bemerkung: für die Fokussierung von Teilchen braucht es Quadrupol und Drift!

Die FODO-Zelle

- Ein Quadrupol fokussiert in einer Richtung, defokussiert in der anderen.
- Eine Abfolge von fokussierenden und defokussierenden Quadrupolen mit Driftstrecken dazwischen fokussiert in beide Richtungen (zeige es mit R-Matrizen)!
- Einfachste Realisierung: die FODO-Zelle (Fokussierend/DefOkussierend) Standardelement von Beschleunigern.
- Transportmatrix:

$$R = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{bmatrix}$$

...rechne!

Betatron-Schwingungen

- Transversale Schwingungen der Teilchen um den Sollorbit.
- Rückstellkraft ist gegeben durch die fokussierenden Magnete (meist Quadrupole).
- Beschreibung durch die Hill-Gleichung (harmonischer Oszillator mit ortsabhängiger Rückstellkraft)

$$x'' + k(s)x = 0$$

• Lösungsansatz:
$$x(s) = A\sqrt{\beta(s)}\cos(\phi(s) + \phi_0)$$

 $\begin{array}{ll} \text{mit} & A = A_0 & \text{invariante Betatron-Amplitude} \\ \phi_0 & \text{Betatron-Phase} \end{array}$

Teilcheneigenschaften

eta(s) Beta-Funktion $\phi(s)$ Betatron-Phasenvorschub

Eigenschaften des Beschleunigers ("lattice")

Twiss-Parameter

- Separation zwischen
 - der Strahlgrösse im Phasenraum (die Emittanz ε , eine Eigenschaft des Strahls)
 - und der Verteilung auf die Freiheitsgrade (Fokussierung, eine Eigenschaft des Beschleunigers)

$$\Sigma = \begin{bmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{bmatrix} = \varepsilon \begin{bmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{bmatrix}$$

Damit ergeben sich die folgenden wichtigen Beziehungen

$$\langle x^2 \rangle = \beta \varepsilon \qquad \langle x'^2 \rangle = \gamma \varepsilon \qquad \langle xx' \rangle = -\alpha \varepsilon$$

$$\varepsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

sowie

(statistische Definition der Emittanz)

- Die Strahlellipse lässt sich schreiben als $\gamma x^2 + 2 \alpha x x' + \beta x'^2$
- α , β , γ heissen Courant-Snyder-, oder Twiss-Parameter
- Sie sind nicht unabhängig voneinander: $\alpha = -\frac{\beta'}{2} \qquad \gamma = \frac{1+\alpha^2}{\beta}$

$\alpha,\beta,\gamma...$

Die β -Funktion

$$x(s) = A\sqrt{\beta(s)}\cos(\phi(s) + \phi_0)$$

Die β-Funktion hat eine *überragende Bedeutung* in der Strahldynamik:

- ...definiert die Optik eines Beschleunigers vollständig (α aus β ')
- ...gibt an, wie sich die Emittanz (invariantes Phasenraumvolumen) auf Strahlgrösse und Strahldivergenz aufteilt.
- ...beschreibt die Envelope der Betatronschwingungen.
- …ist proportional zur inversen Frequenz der Betatronschwingungen.
- ...muss separat für x und y definiert werden.
- ...wird in Metern gemessen.

α - und β -Funktionen des SwissFEL Injektors

Courtesy E. Prat

Strahlbreite beim SwissFEL Injektor (Messung)

E. Prat

Abgleichung der Strahloptik ("Matching")

- β: eine Funktion der Teilchen oder der Maschine?
- Einerseits: $\beta = \frac{\langle x^2 \rangle}{\varepsilon} = \frac{\langle x^2 \rangle}{\sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}}$

d.h. ß gegeben durch die Teilchenverteilung

- Andererseits: β(s) gegeben durch k(s), die Beschleunigeroptik
 - → Der Strahl muss an die Optik angepasst werden ("optics matching")

In der Praxis: eine Serie von Quadrupolen ("matching quads") wird so eingestellt, bis der Strahl die erwarteten Twiss-Parameter aufweist (Verifikation durch Messung der Strahlbreite unter verschiedener Fokussierung)

Emittanz = Parallelität, Fokussierbarkeit

Für Freie-Elektronen-Laser wichtig: kleiner Strahl, der klein bleibt! (Überlapp mit Photonen!)

gleiche Strahlgrösse!

Emittanz: Definition

Emittanz beschreibt, wieviel Phasenraum ein Strahlpaket einnimmt.

Klassische Definition (2d):

 ε = Fläche der Phasenraumellipse in (x,x')

(Einheit: m rad, oder mm mrad)

Statistische Definition (2d):

$$\varepsilon_x = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Emittanz: Messung

Direkt können wir nur entlang der x-Achse messen (Strahlgrösse).

Messung der Strahlaufweitung (Divergenz) nur möglich durch Propagation.

Zwei Möglichkeiten:

Emittanz: Messung durch Zerlegung

1. Methode: Strahl in (horizontale und/oder vertikale) Scheiben zerlegen und die Aufweitung der entstehende "Beamlets" beobachten.

Vergleich von Beamletbreite nach einer Driftstrecke mit Schlitzbreite gibt Information über Divergenz (x')

- Einfaches Prinzip, aber teuflische Details (systematische Fehler von Schlitzbreite, Streuung an der Maske etc.)
- Geht nur bei niedrigen Energien (sonst Maske futsch!)

Schlitze und Löcher

Schlitzmaske

Wird durch den Strahl gefahren.

Messung nur in einer Dimension und über mehrere Bunches.

"Pepperpot"

Messung in beiden Dimensionen mit einem Bild! Nachteil: Beamlets können überlappen!

Installiert in SwissFEL Injektor Testanlage!

Emittanz: strahloptische Messung

2. Methode: den ganzen Strahl propagieren lassen und die Strahlbreite als Funktion der Distanz ("Envelope-Scan") oder als Funktion der Fokussierung (Quadrupol-Scan) messen.

Beispiel: FODO-Zelle

Abfolge von FOkussierenden und DefOkussierenden Quadrupolen – Standardanordnung in Speicherringen

Fig. 4.2 How the conserved phase space appears at different points in a FODO cell. The development of a constant-emittance beam in phase space at (a) a narrow waist, (b) and (c) places where the beam is diverging, and (d) at a broad maximum at the centre of an F lens.

Voraussetzungen:

- Gute Kenntnis der Strahloptik
- Keine Raumladungseffekte (d.h. relativ hohe Energie)

Entscheidender Parameter in beiden Fällen (Envelope- und Quadrupol-Scan): Phasenvorschub der Betatron-Schwingung

Envelopen- und Quadrupolscan

Aus der Transportgleichung ergibt sich sofort für das Quadrat der Strahlbreite σ₁₁:

$$\sigma_{11,f} = R_{11}^2 \sigma_{11,i} + 2R_{11}R_{12}\sigma_{12,i} + R_{12}^2 \sigma_{22,i}$$

- Wenn wir die Strahlbreite genug oft (mind. dreimal) unter verschiedenen Transportbedingungen messen, können wir σ_{11} , σ_{12} , σ_{22} rekonstruieren und daraus die Emittanz berechnen!
- Beispiel: Drift der Länge L:

$$\sigma_{11,f} = \sigma_{11,i} + 2L\sigma_{12,i} + L^2\sigma_{22,i}$$

- Einfacher Quadrupol-Scan: $R = R_L R_Q$, dann $\sigma_{11,f} = f(k) = ...$ (Hausaufgabe auf morgen!), siehe auch M.C. Ross et al., Proceedings PAC1987.
- Wir werden die Strahlbreite bei verschiedener Fokussierung messen und so die Emittanz bestimmen!

Optische Messungen in der Praxis

Einfacher Quadrupolscan:

Simpel, Strahloptik muss nicht genau bekannt sein

Unsere Messung morgen!

- Abtastung des Phasenvorschubs jedoch nicht ideal
- grösste Phasenabdeckung im Fokus, wo der Strahl am kleinsten ist!
- Auflösungslimitiert im Fokus, Raumladungseffekte
- Besser (und ursprünglich vorgesehen für SwissFEL): FODO-Scan (= Envelopenscan in FODO-Sektion)
 - exakt bekannter, regelmässiger Phasenvorschub.
 - Gleiche Strahlgrösse bei allen Messungen.
 - Aber: sehr aufwendig (zeitintensiv): sieben Schirme müssen eingefahren werden, kalibriert sein etc.
 - Relativ wenig Messpunkte.
- Noch besser: Multiquadrupol-Scan
 - Fast beliebig wählbarer Phasenvorschub.
 - Beliebig viele Messpunkte.
 - Strahlbreite kann ungefähr konstant gehalten werden.
 - Nur ein Schirm wird verwendet (Vor- und Nachteil...)
- Am besten: Einzel-Quadrupol-Scan mit symmetrisierter Optik (E. Prat, 2012)
 - Gleiche Vorteile wie Multiquadrupol-Scan
 - Zusätzlich: gleichzeitige Messung in x und y dank besonders ausgeklügelter Optik

Beispiel Quadrupol-Scan

Beispiel Multiquad-Scan

Beispiel Prat-Scan

- Gleichzeitige Fokussierung in x und y
- Operateur sieht auf einen Blick, be ob die Strahloptik gut abgestimmt ist

Beispiel FODO-Scan

(was bedeuten die Kreise mit den vielen Tangenten?)

Thomas Schietinger (SH84) Bruce Lecture, 14 November 2012 p. 72

Thomas Schietinger (SH84) Bruce Lecture, 14 November 2012 p. 73

Slice-Emittanz

...slice...

...and analyze

Thomas Schietinger (SH84) Bruce Lectu p. 79

Messungen morgen

- Gun setup:
 - Betriebsphase (Schottky-Scan)
 - Energie (Spektrometer)
- Orbit steering (one-to-one)
- Endenergie
- Emittanz (Quadrupol-Scan)
- Bunch-Länge, Slice-Emittanz*

* falls Zeit erlaubt