SwissFEL Injektor Testanlage Komponenten und strahldynamische Konzepte

- Übersicht SwissFEL Injektor Testanlage
 - Systeme und Komponenten
 - Diagnostik, Messungen
- Strahldynamik für Fussgänger
 - Die wichtigsten Konzepte
 - Emittanzmessung

...das nötigste, um die Messungen morgen zu verstehen.

Thomas Schietinger 14. November 2012

- Elektronen
- Fokussierung ("Optik")
- Lokalisierung ("Orbit")
- Energie
- Spitzenstrom
- Kleine Emittanz/Strahlgrösse

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität)	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	 Laserpulsform Magnet-Schikane (Bunch-Kompressor) 	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	 Design Elektronenkanone "Emittanzkompensation" 	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität)	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	 Laserpulsform Magnet-Schikane (Bunch-Kompressor) 	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	 Design Elektronenkanone "Emittanzkompensation" 	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Messungen morgen

• Gun setup:

- Betriebsphase (Schottky-Scan)
- Energie (Spektrometer)
- Orbit steering (one-to-one)
- Endenergie
- Emittanz (Quadrupol-Scan)
- Bunch-Länge, Slice-Emittanz*

* falls Zeit erlaubt

Teil I

Übersicht SwissFEL Injektor Testanlage

SwissFEL Injektor Testanlage

Momentane Situation:

SwissFEL Injektor Testanlage

Situation vor einem Jahr (Praktikum 2011):

Grundkonzept und Schlüsselkomponenten

Der SwissFEL Injektor ist ein zweigeteilter Photoinjektor mit anschliessendem Bunch-Kompressor:

- **Zweigeteilter Photoinjektor:** 2.5-Zellen S-Band Kanone getrennt vom S-Band Booster durch ca. 3 m Drift (S-Band = 3 GHz).
- Die Drift erlaubt die Korrektur von Raumladungseffekten durch magnetische Fokussierung ("Emittanzkompensation")
- Der Elektronenpuls wird durch einen 10 ps UV-Laserpuls aus einer Kupferkathode herausgelöst (photo-elektrischer Effekt). Bei noch kürzeren Pulsen würden die Raumladungseffekte zu stark.
- Mit dem Bunch-Kompressor gelingt es, trotzdem noch k
 ürzere Elektronenpulse zu erreichen (0.03–0.2 ps, je nach Ladung). Wegen der Raumladung muss dies bei relativ hoher Energie geschehen.
- Eine harmonische Kavität (X-Band = 12 GHz) vor dem Bunch-Kompressor gibt dem Elektronenpuls das nötige Längsprofil für eine optimale Kompression ("Linearisierung").

SwissFEL Injektor Testanlage

- Elektronenkanone und erste Beschleunigersektion ("erste ~60 m von SwissFEL").
- Test von Komponenten und Prozeduren im Hinblick auf SwissFEL.
- Die Anlage wird später zum definitiven SwissFEL Tunnel transferiert.

SwissFEL Injektor Testanlage

Besuch heute nachmittag! (15:30 – 16:30)

Feierliche Einweihung (24. August 2010)

Bundesrat Didier Burkhalter am Drücker.

Knopf verbunden mit Laser-Verschluss. Nach Betätigung öffnet sich der Laser-Verschluss, Laserlicht trifft auf die Kathode und löst Elektronen heraus (Photoeffekt), welche dann sofort beschleunigt werden.

Strahl auf einem Schirm am Ende der Strahllinie.

Ladungsimpuls nach der Elektronenkanone.

Besuch im Injektor-Tunnel.

SwissFEL Injektor Testanlage

Systeme / Komponenten

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	 Laserpulsform Magnet-Schikane (Bunch-Kompressor) 	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	 Design Elektronenkanone "Emittanzkompensation" 	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Elektronenkanone

- Ausrangierte CERN-Kanone "CTF3 Gun Nr. V" (CLIC Test Facility)
- Kurzfristiger Ersatz f
 ür sog. "Low-Emittance Gun" (LEG), welche die Erwartungen nicht erf
 üllen konnte.
- Neue Kupferkathode vom PSI.
- Neue PSI-Kanone (basierend auf LCLS Design) ist in Produktion, Einbau 2013.

Neue Kupferkathode (PSI)

CTF3 Gun Nr. 5 kurz nach der Ankunft am PSI

Instrumentierung im Bereich der Gun

Hochfrequenz-Kavitäten

- Wellenleiter mit Iris-Bestückung (Reduktion der Phasengeschwindigkeit)
- Eine Wanderwelle ("travelling wave") wird durch die Struktur geschickt, der Elektronenbunch wird durch die Welle stetig beschleunigt.

HF Kavitäten im SwissFEL Injektor

3 GHz
20 MV/m
36.5 MW
0.9 µs
100 Hz
3 µs

Woher kommt die HF-Leistung?

Klystron Spannung	350 kV	
Klystron Strom	300 A	Modulator-Parameter
HF-Frequenz	3 GHz	
Klystron HF-Leistung	45 – 60 MW	HE Parameter
HF-Pulslänge	4.5–1.5µs	nr-raiametei
Impulsfrequenz	100 Hz	

Magnete (Orbit, Optik)

http://www.helmholtz-berlin.de

Magnete (Orbit, Optik)

Magnete (Orbit, Optik)

Linac: praktisch nur Quadrupole von Bedeutung!

Schwingungen um Sollorbit: Betatron-Oszillationen Auch in Linearbeschleunigern von Bedeutung!

Magnete im SwissFEL Injektor

Dipol:

Ablenkung für Energiemessung oder Bunch Kompression

Quadrupol:

Fokussierung/Defokussierung (Optik)

Steuermagnet (Dipol): Orbit-Korrektur

Bunch-Kompressor: Elemente

Bunch-Kompressor

- Dispersion in *magnetischer Schikane:* zwinge die ersten Elektronen auf eine längere Bahn, die letzten Elektronen auf eine kürzere.
- Nur möglich, falls Energie und Position *korreliert* sind, d.h. die ersten Elektronen eine tiefere Energie haben als die letzten.
- Die Korrelation wird in der S-Band Beschleunigung erreicht (Steigung der Sinuskurve) und in der X-Band Kavität geglättet (linearisiert).

Thomas Schietinger (SH84)

Bunch-Kompressor (Installation)

SwissFEL Injektor Testanlage

Diagnostik / Messungen

Anforderung	Umsetzung bei SwissFEL (Testinjektor)	Messung/Verifizierung bei SwissFEL (Testinjektor)
Elektronen	Laser-Elektronenkanone (Photokathode + HF-Kavität	z.B. Wall Current Monitor
Fokussierung (Optik)	Quadrupolmagnete	Schirmmonitor
Lokalisierung (Orbit)	Steuermagnete (Dipole)	Strahllagemonitor (BPM)
Energie	Hochfrequenzkavitäten (3 GHz = S-Band)	Spektrometer (Dipolmagnet)
Spitzenstrom	 Laserpulsform Magnet-Schikane (Bunch-Kompressor) 	Strahlprofilmessung durch Hochfrequenzdeflektor und Schirmmonitor
Emittanz/Strahlgrösse	 Design Elektronenkanone "Emittanzkompensation" 	 "Pepperpot"/Schlitze (niedrige Energien) Strahloptische Methoden (höhere Energien)

Wie zählen wir die Elektronen?

Ladungsmonitor (Wall Current Monitor)

Signal (ferngesteuertes Oszilloskop).

Die Signalbreite ist gegeben durch die Elektronik, nicht durch die Bunchlänge (zu kurz!).

Der Schottky Scan

Elektronenladung als Funktion der Lasereinschussphase (relativ zur HF-Welle)

- Ladungsmessung durch Wall Current Monitor
- Bei 2994 MHz, 10° ≈ 9.28 ps

⁽in der Realität drehen wir an der HF-Phase!)

Wo ist der Strahl?

Schirmstation: BPM = Beam Position Monitor (Strahllagemonitor) SCR = Screen (Schirmmonitor)

Bruce Lecture, 14 November 2012

Orbitkorrektur

In Ringen (in modifizierter Form auch in Linacs):

- *m* Korrektormagnete (Dipole) und *n* Strahllagemonitore (BPM).
- Berechne (oder messe) die $(m \times n)$ Response-Matrix A:
- Das Element A_{ki} enthält Orbit am BPM *i* für "single kick" vom Korrektor k:

Andreas Streun, Vorlesung ETH Zürich

• "von Hand": one-to-one steering (morgen!)

Energie- (Impuls-) Messung

Impuls:

$$p = \frac{eBL_{\text{eff}}}{2\sin(\theta/2)}$$

Impulsbreite:

$$\sigma_p^{\rm rms} \approx \frac{dp}{dx} \sigma_x^{\rm rms} = \frac{p_0}{2d \tan(\theta_0/2)} \sigma_x^{\rm rms}$$

Analog bei Endenergie!

Spektrometer-Scan

Spektrometer-Scan

- Spektrometer-Scan mit Schottky-Scan
- Bestätigung, dass Phase von 38° minimale Energieunschärfe ergibt.
- Maximale Energie bei ungefähr 41° (von der Schottky-Kante).
Messung der Bunchlänge

Scherung ("Streaking") des Bunches durch transvers ablenkende Kavität

Messung der Bunchlänge

Messung mit "Driftoptik"

- HF Deflektor schert den Strahl vertikal.
- Bunchlänge wird aus der vertikalen Grösse des gescherten Strahl nach einer Kalibration bestimmt.
- Die Kalibration (Konversion mm nach ps) geschieht durch Beobachtung der vertikalen Verschiebung des Strahls nach einer Änderung der Phase des Deflektors.
- Identifikation von vorne und hinten durch Einführung einer kleinen Verzögerung des Lasers durch Einschub eines Silika-Glases in der Laser-Transferlinie.

Bunchlänge und Energie: Iongitudinaler Phasenraum!

Messung mit "Driftoptik"

- Beobachtung des vertikal gescherten Strahls im Spektrometer-Arm •
- Die HF-Krümmung wird sichtbar! •

Bunch-Kompression

ϕ : HF-Phase in FINSB03/04 τ : Bunchlänge

- Erste Beobachtung des komprimierten Bunches (18. April 2012, Jaguar-Laser)
- Bunchlänge (rms Gauss-Fit) reduziert von 3.6 ps auf 200 fs.
- BC Winkel 4.07° (R₅₆ = –46.19 mm rad²)

3.6 ps \rightarrow 200 fs (rms)

Teil II

Strahldynamische Konzepte

Strahldynamische Konzepte

- Strahlmomente
- Sigma-Matrix und Strahlellipse
- Transportmatrizen
- Betatron-Schwingungen
- Twiss Parameter
- Beta-Funktion
- Abgleichung der Strahloptik ("Matching")
- Emittanz, Messmethoden

Strahlmomente

- Typisches Strahlpaket im SwissFEL Injektor: 200 pC = 10⁹ Elektronen. Exakte Beschreibung durch 10⁹ 6D-Vektoren (Positionen und Impulse).
- Einfacher: Beschreibung durch Momente.
 - Mathematisch konsistente Beschreibung (lineare Strahldynamik).
 - Physikalisch motiviert durch zentralen Grenzwertsatz (Strahl häufig in einem Gleichgewicht zwischen Rauschen und Dämpfung).
 - Die ersten beiden Momente können relativ einfach gemessen werden.
- Erstes Moment: mittlere Strahlposition (Schwerpunkt) $\langle x \rangle$
 - Messung durch Strahllagemonitor
- Zweites Moment: Strahlbreite (RMS) $\langle (x \langle x \rangle)^2 \rangle = \langle x^2 \rangle \langle x \rangle^2$
 - Messung mit Schirm oder Drahtabtaster (wire scanner)
- Im folgenden Beschränkung auf eine Dimension (horizontal, x):
 - Position: x
 - Bewegungsrichtung/Impuls: $x' = \frac{dx}{ds}$
 - (s: Pfadlänge entlang Beschleunigerachse)

Х

"Orbit"

"Optik"

x' = dx/ds

S

Sigma-Matrix und Strahlellipse

- Beschreibung der transversalen Dynamik in einer Dimension (z.B. horizontal, x):
 - Ein Teilchen: Vektor $X = \begin{pmatrix} x \\ x' \end{pmatrix}$
 - Teilchenverteilung: Matrix $\Sigma = \begin{vmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{vmatrix} = \begin{vmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{vmatrix}$
- Σ ist symmetrisch und beschreibt eine Ellipse, die Strahlellipse: $X^T \Sigma^{-1} X = 1$
- Die Strahlbreite ist gegeben durch $\sqrt{\sigma_{11}} = \sqrt{\langle x^2 \rangle}$
- Allgemeiner: Das durch den Strahl eingenommene Phasenraumvolumen ist gegeben durch die Fläche der Ellipse (Emittanz): $\varepsilon = \sqrt{\det \Sigma}$
- Transport von einem Teilchen oder einer Teilchenverteilung durch den Beschleuniger (i → f) wird durch sogenannte R-Matrizen beschrieben (R = Ray-Tracing):

R-Matrizen-Formalismus: **Karl Brown,** SLAC-75-rev-4 (1982), SLAC-91-rev-2 (1977).

Matrix
$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{12} & R_{22} \end{bmatrix}$$

 $X_f = RX_i$ (ein Teilchen)
 $\Sigma_f = R\Sigma_i R^T$ (Teilchenverteilung

Die Strahlellipse

Thomas Schietinger (SH84)

Einfache Beispiele von Transportmatrizen

Driftstrecke

- Teilchentransport ohne äussere Kräfte.
- R=?
- Charakteristisches Element?

Dünner Quadrupolmagnet

- Teilchen werden (in einer Richtung) fokussiert analog zu optischer Linse
- *R* = ?
- Charakteristisches Element?

Bemerkung: für die Fokussierung von Teilchen braucht es Quadrupol und Drift!

Einfache Beispiele von Transportmatrizen

- Driftstrecke
 - Teilchentransport ohne äussere Kräfte.
 - R = ?
 - Charakteristisches Element? $R_{12} = L$

Dünner Quadrupolmagnet

- Teilchen werden (in einer Richtung) fokussiert analog zu optischer Linse
- R = ?
- Charakteristisches Element? $R_{21} = k = 1/f$
- Hausaufgabe: 4 x 4-Matrix f
 ür Quadrupol in x und y?

Bemerkung: für die Fokussierung von Teilchen braucht es Quadrupol und Drift!

$$R = \left[\begin{array}{cc} 1 & L \\ 0 & 1 \end{array} \right]$$

 $R = \left[\begin{array}{cc} 1 & 0\\ k & 1 \end{array} \right]$

$$R = \begin{bmatrix} 1 & 0\\ -\frac{1}{f} & 1 \end{bmatrix}$$

- Ein Quadrupol fokussiert in einer Richtung, defokussiert in der anderen.
- Eine Abfolge von fokussierenden und defokussierenden Quadrupolen mit Driftstrecken dazwischen fokussiert in beide Richtungen (zeige es mit R-Matrizen)!
- Einfachste Realisierung: die FODO-Zelle (Fokussierend/DefOkussierend) Standardelement von Beschleunigern.
- Transportmatrix:

$$R = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{bmatrix}$$

...rechne!

Betatron-Schwingungen

- Transversale Schwingungen der Teilchen um den Sollorbit.
- Rückstellkraft ist gegeben durch die fokussierenden Magnete (meist Quadrupole).

Twiss-Parameter

- Separation zwischen
 - der Strahlgrösse im Phasenraum (die Emittanz ε , eine Eigenschaft des Strahls)
 - und der Verteilung auf die Freiheitsgrade (Fokussierung, eine Eigenschaft des Beschleunigers)

$$\Sigma = \begin{bmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{bmatrix} = \varepsilon \begin{bmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{bmatrix}$$

• Damit ergeben sich die folgenden wichtigen Beziehungen

$$\langle x^2 \rangle = \beta \varepsilon \qquad \langle x'^2 \rangle = \gamma \varepsilon \qquad \langle xx' \rangle = -\alpha \varepsilon$$

sowie

$$\varepsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

(statistische Definition der Emittanz)

• Die Strahlellipse lässt sich schreiben als

$$\gamma x^2 + 2\alpha x x' + \beta x'^2$$

- α , β , γ heissen **Courant-Snyder-**, oder **Twiss-Parameter**
- Sie sind nicht unabhängig voneinander:

$$=-rac{eta'}{2}\qquad \gamma=rac{1+lpha^2}{eta}$$

 α

Die β -Funktion

$$x(s) = A\sqrt{\beta(s)}\cos(\phi(s) + \phi_0)$$

Die β -Funktion hat eine *überragende Bedeutung* in der Strahldynamik:

- ...definiert die Optik eines Beschleunigers vollständig (α aus β')
- ...gibt an, wie sich die Emittanz (invariantes Phasenraumvolumen) auf Strahlgrösse und Strahldivergenz aufteilt.
- ...beschreibt die Envelope der Betatronschwingungen.
- ...ist proportional zur inversen Frequenz der Betatronschwingungen.
- ...muss separat für x und y definiert werden.
- ...wird in Metern gemessen.

α- und β -Funktionen des SwissFEL Injektors

Strahlbreite beim SwissFEL Injektor (Messung)

E. Prat

Abgleichung der Strahloptik ("Matching")

- β: eine Funktion der Teilchen oder der Maschine?
- Einerseits: $\beta = \frac{\langle x^2 \rangle}{\varepsilon} = \frac{\langle x^2 \rangle}{\sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}}$

d.h. β gegeben durch die *Teilchenverteilung*

• Andererseits: $\beta(s)$ gegeben durch k(s), die Beschleunigeroptik

 \rightarrow Der Strahl muss an die Optik angepasst werden ("optics matching")

In der Praxis: eine Serie von Quadrupolen ("matching quads") wird so eingestellt, bis der Strahl die erwarteten Twiss-Parameter aufweist (Verifikation durch Messung der Strahlbreite unter verschiedener Fokussierung)

Emittanz = Parallelität, Fokussierbarkeit

Für Freie-Elektronen-Laser wichtig: kleiner Strahl, der klein bleibt! (Überlapp mit Photonen!)

kleine Emittanz

gleiche Strahlgrösse!

grosse Emittanz

Emittanz: Definition

Emittanz beschreibt, wieviel Phasenraum ein Strahlpaket einnimmt.

Klassische Definition (2d):

 ϵ = Fläche der Phasenraumellipse in (x,x')

(Einheit: m rad, oder mm mrad)

Statistische Definition (2d):

$$\varepsilon_x = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Emittanz: Messung

Direkt können wir nur entlang der x-Achse messen (Strahlgrösse).

Messung der Strahlaufweitung (Divergenz) nur möglich durch Propagation.

Zwei Möglichkeiten:

Emittanz: Messung durch Zerlegung

1. Methode: Strahl in (horizontale und/oder vertikale) Scheiben zerlegen und die Aufweitung der entstehende "Beamlets" beobachten.

Vergleich von Beamletbreite nach einer Driftstrecke mit Schlitzbreite gibt Information über Divergenz (x')

- Einfaches Prinzip, aber teuflische Details (systematische Fehler von Schlitzbreite, Streuung an der Maske etc.)
- Geht nur bei niedrigen Energien (sonst Maske futsch!)

Schlitze und Löcher

Schlitzmaske

Wird durch den Strahl gefahren.

Messung nur in einer Dimension und über mehrere Bunches.

"Pepperpot"

Messung in beiden Dimensionen mit einem Bild! Nachteil: Beamlets können überlappen!

Installiert in SwissFEL Injektor Testanlage!

Thomas Schietinger (SH84)

Emittanz: strahloptische Messung

2. Methode: den ganzen Strahl propagieren lassen und die Strahlbreite als Funktion der Distanz ("Envelope-Scan") oder als Funktion der Fokussierung (Quadrupol-Scan) messen.

Voraussetzungen:

- Gute Kenntnis der Strahloptik
- Keine Raumladungseffekte (d.h. relativ hohe Energie)

Fig. 4.2 How the conserved phase space appears at different points in a FODO cell. The development of a constant-emittance beam in phase space at (a) a narrow waist, (b) and (c) places where the beam is diverging, and (d) at a broad maximum at the centre of an F lens.

Entscheidender Parameter in beiden Fällen (Envelope- und Quadrupol-Scan): **Phasenvorschub der Betatron-Schwingung**

Envelopen- und Quadrupolscan

• Aus der Transportgleichung ergibt sich sofort für das Quadrat der Strahlbreite σ_{11} :

 $\sigma_{11,f} = R_{11}^2 \sigma_{11,i} + 2R_{11}R_{12}\sigma_{12,i} + R_{12}^2 \sigma_{22,i}$

- Wenn wir die Strahlbreite genug oft (mind. dreimal) unter verschiedenen Transportbedingungen messen, können wir σ_{11} , σ_{12} , σ_{22} rekonstruieren und daraus die Emittanz berechnen!
- Beispiel: Drift der Länge L:

$$\sigma_{11,f} = \sigma_{11,i} + 2L\sigma_{12,i} + L^2\sigma_{22,i}$$

- Einfacher Quadrupol-Scan: R = R_LR_Q, dann σ_{11,f} = f(k) = ... (Hausaufgabe auf morgen!), siehe auch M.C. Ross et al., Proceedings PAC1987.
- Wir werden die Strahlbreite bei verschiedener Fokussierung messen und so die Emittanz bestimmen!

Optische Messungen in der Praxis

• Einfacher Quadrupolscan:

- Simpel, Strahloptik muss nicht genau bekannt sein
- Abtastung des Phasenvorschubs jedoch nicht ideal
- grösste Phasenabdeckung im Fokus, wo der Strahl am kleinsten ist!
- Auflösungslimitiert im Fokus, Raumladungseffekte
- Besser (und ursprünglich vorgesehen für SwissFEL): FODO-Scan (= Envelopenscan in FODO-Sektion)
 - exakt bekannter, regelmässiger Phasenvorschub.
 - Gleiche Strahlgrösse bei allen Messungen.
 - Aber: sehr aufwendig (zeitintensiv): sieben Schirme müssen eingefahren werden, kalibriert sein etc.
 - Relativ wenig Messpunkte.

Noch besser: Multiquadrupol-Scan

- Fast beliebig wählbarer Phasenvorschub.
- Beliebig viele Messpunkte.
- Strahlbreite kann ungefähr konstant gehalten werden.
- Nur ein Schirm wird verwendet (Vor- und Nachteil...)

• Am besten: Einzel-Quadrupol-Scan mit symmetrisierter Optik (E. Prat, 2012)

- Gleiche Vorteile wie Multiquadrupol-Scan
- Zusätzlich: gleichzeitige Messung in x und y dank besonders ausgeklügelter Optik

Unsere Messung morgen!

Beispiel Quadrupol-Scan

Beispiel Multiquad-Scan

Beispiel Prat-Scan

- Gleichzeitige Fokussierung in x und y
- Operateur sieht auf einen Blick, *b b*

Beispiel FODO-Scan

(was bedeuten die Kreise mit den vielen Tangenten?)

Courtesy B. Beutner

Courtesy B. Beutner

Thomas Schietinger (SH84)

Courtesy B. Beutner

Courtesy B. Beutner

Courtesy B. Beutner

Messungen morgen

• Gun setup:

- Betriebsphase (Schottky-Scan)
- Energie (Spektrometer)
- Orbit steering (one-to-one)
- Endenergie
- Emittanz (Quadrupol-Scan)
- Bunch-Länge, Slice-Emittanz*

* falls Zeit erlaubt