

Repetition of the Re-Measurement of the ⁶⁰Fe Half- Life

M. Ayranov, M. Bunka, <u>R. Dressler</u>, I. Günther-Leopold, St. Heinitz, N. Kivel, S. Lüthi, D. Schumann, T. Stowasser, A. Vögele, D. Wittwer, M. Wohlmuther

Supernova Propagation and Cloud Enrichment: A new Model for the Origin of ⁶⁰Fe in the early Solar System M. Gounelle, A. Meibom, P. Hennebelle, Shu-ichiro Inutsuka:

Astrophysical J. 694 (2009) L1

Abstract:

The radioactive isotope 60 Fe (t_{1/2} = 1.5 Myr) was present in the early solar system. It is unlikely that it was injected directly into the nascent solar system by a single, nearby supernova (SN). It is proposed instead that it was inherited during the molecular cloud (MC) stage from several SNe belonging to previous episodes of star formation.

ICPy-Measuren Introduction

Next Step

Why Re-Measurement of ⁶⁰Fe Half-Life

dating of cosmic or terrestrial samples using ⁶⁰Fe

⁶⁰Fe t_{1/2} = 1.49 Ma ± 0.27 Ma
 W. Kutschera et al., Nucl. Instrum. Methods B 5 (1984) 430

⁶⁰Fe t_{1/2} = 2.62 Ma ± 0.04 Ma
 G. Rugel, et al.: Phys. Rev. Lett. 103 (2009) 072502

⁶⁰Fe Sample Preparation

Purification Steps

- □ ⁶⁰Fe target dissolved in 7 M HCl
- Liquid- liquid-extraction of Fe with methyl isobutyl ketone
- Aqueous phase: Ni, Co, Cu organic phase: Fe
- Back extraction with 0.1 M HCl repetition of procedure
- □ Chemical yield about 80%

Last separation: 28.08.2009 11:00

- Prepared Samples
 - □ 2 samples each $3.5 \cdot 10^{15}$ atoms for γ measurements (PSI & Uni Vienna)
 - 1 sample 1.7.10¹⁵ atoms for ICP-MS measurements (PSI)
 - 1 sample 1.7.10¹⁵ atoms
 for thermal neutron capture (Uni Vienna)

Next Step

ICP-

SS

γ -Spectroscopic Set-Up

Data Acquisition System

- Canberra hardware
 - High Voltage Supply
 - Amplifier

 - Digital Stabilizer
 - Acquisition interface
- Canberra software
 Genie 2000

Next Step

γ -Spectroscopic Set-Up

Well HPGe-Detector Princeton Gamma-Tech

- Crystal
 - Diameter Ø60 mm
 - Length 53 mm
 - Blind well hole
 Ø19 mm x 40 mm
 - Sample Hole
 Ø15 mm x 60 mm
- Resolution
 - 1.54 keV @ ⁵⁷Co 122 keV
 - 2.38 keV @ ⁶⁰Co 1332 keV
- Efficiency
 - □ abs. 4.3% @ ⁶⁰Co 1332 keV

Sample Container

- 4-CV 4mL crimp top vial
- Ø15 mm x 46 mm

γ-Measurement Schedule

Weekly Schedule

- refill liquid nitrogen
- activate digital stabilizer
- ⁶⁰Co ²⁴¹Am source 4h measurement
- hold digital stabilizer parameter
- ⁶⁰Fe source
 160 h measurement
- Start measurement: 28.08.2009 15:01:02
- Collected spectra: 86 total 13760 h

CP-MS γ-Measurement

oduction

Next Step

l	٦	ĘIJ								
j			Fit Result							
			⁶⁰ Fe Activity							
			1173 keV	$\epsilon_{1173keV} = 4.04\% \pm 0.20\%$ A _{re} = 35.422 Bg ± 0.024 Bg	teg					
			1220 kaV	$A_{Co} = 0.0270 \text{ Bq} \pm 0.0025 \text{ Bq}$	ICF					
			1332 Kev	$\mathcal{E}_{1332keV} = 3.47\% \pm 0.17\%$ A _{Fe} = 35.339 Bq ± 0.028 Bq						
			Mean:	$A_{Co} = 0.0307 \text{ Bq} \pm 0.0030 \text{ Bq}$	γ-M					
				$A_{Fe} = 35.381$ Bq ± 0.018 Bq ± 1.77 Bq $A_{Co} = 0.0289$ Bq ± 0.0020 Bq ± 0.0015 Bq	easurem					
		G. Rugel, et al.: Phys. Rev. Lett. 103 (2009) 072502								
		$\varepsilon_{1173keV} = 0.156\% \pm 0.0023\%$ $\varepsilon_{1332keV} = 0.138\% \pm 0.0021\%$								
				$A_{Fe} = 49.19 \text{ Bq} \pm 0.11 \text{ Bq} \pm 0.74 \text{ Bq}$ $A_{Co} = 0.207 \text{ Bq} \pm 0.006 \text{ Bq} \pm 0.003 \text{ Bq}$	on					

Sensitivity of Non-Linear Fit

param	value	uncert.	value	uncert.	value	uncert.
A _{Fe}	35.381	fixed	35.381	fixed	256.2	92984.9
A _{Co}	0.00289	fixed	0.00289	fixed	0.21	75.4
δ	1.0008	0.0012	1	fixed	1	fixed
φ	0.0573	0.0018	0.056	0.001	0.0594	fixed

Next Step IC

ICP-MS γ-Measurement

Number of ⁶⁰Fe Atoms

Neptune MC-ICP-MS

Thermo Fisher Scientific, Germany

- Double focusing sector field (Nier-Johnson-geometry)
- Ar-plasma torch (27 MHz RF)
 - □ 95% ionisation yield of Fe
- APEX HF spray chamber
 - □ high efficient desolvating system
 - □ custom made sampler & skimmer (AI)
- PFA-ST micro flow nebulizer 65 μl/min
- Entrance slit
 - \Box 50 μ m (medium resolution)
 - □ Resolution ~2400
- Focal-plane detectors
 - 9x Faraday cup
 - 1x Secondary electron multiplier (can replace central Faraday cup)
- Acquisition time 4.196 s

Next Step

ICP-MS

asurement

oduction

Neptune MC-ICP-MS at HOT-Lab PSI

Results

Non carrier added samples

all stable isotopes present

isotopic ratio not natural

typical amount of stable isotopes higher than wanted
 composition can be forecast by MCNPX calculations

total mass ⁶⁰Fe

IRMM-014 certified iron reference material

only one short test measurement performed

 \Box 0.36 μ g/g ± 0.04 μ g/g

asurement

oduction

Next

Ste

ICP-MS

