Measurement of the ⁹³Zr capture cross-section at n_TOF facility at CERN

G.Tagliente INFN – Bari (Italy)

n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtič. ³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti¹¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 Research Institutions

120 researchers

Outline

- Scientific Motivations
- > n_TOF facility
- > Measurement
- Data Analysis and Results
- > Astrophysical implication
- Conclusions

Scientific Motivations

• Nuclear Technology

• Nuclear Astrophysics

Nuclear Technology

ACCUMULATION OF FISSION PRODUCTS

PWR 33GWtd THM⁻¹ burnup 3 yr cooling spent fuel

Nuclear Technology

- Partitioning and transmutation of nuclear wastes should make possible to reduce both the size of the repository for nuclear wastes and the long term risk. Fission products, such as ⁹³Zr, are considered as candidates for transmutation otherwise their very long half-lives necessitate storage in a repository for extremely long times.
- Neutron capture cross section of ⁹³Zr, as well as other long-lived fission products, is required for transmutation studies, as well as for nuclear reactor design purposes.
- Formal requests have been made for 5% uncertainties on capture cross sections of ⁹³Zr.

Nuclear Astrophysics

Abundances beyond Fe-ashes of stellar burning

The s-process

Solar system elemental abundances

The r-process

Stellar evolution

Theoretical evolutionary track of a star of 2 M_☉

AGB stars: cool and luminous red giant stars

False-color picture of CO molecules tracing material around the AGB star TT-Cygni

The Thermal Pulse Stellar model: the Zr case

- There is some inconsistency using the TP stellar model to calculate the N_s abundances with actual values of the Zr cross sections.
- The uncertainty on the N_{\odot} is 10%
- The uncertainty on Zr cross sections

Nucleus No N_s/N_{\odot} Normalized to N(Si) $=10^{6}$ atoms ⁹⁰Zr 5.546 0.789 ⁹¹Zr 1.21 1.066 ⁹²Zr 1.848 1.052 ⁹⁴Zr 1.873 1.217

0.302

- ranges from 5% to 20% (depending on the isotopes).
- There are discrepancies of 50% on the results of some measurements

New measurements with high accuracy are needed !

⁹⁶Zr

0.842

The n_TOF facility at CERN

somewhere around here

The n_TOF facility at CERN

 Spallation of high-energy proton beam on a lead target (~360 neutrons/proton)

<u>7x10¹² protons/bunch @ 20</u>
 <u>GeV/c</u> from the PS accelerator (6 ns time resolution)

0.8 Hz maximum repetition rate

<u>Very high instantaneous neutron flux</u> fundamental for studying small samples and radioactive isotopes

n_TOF phase I: Zr measurements

Specifically designed low neutron sensitivity C₆D₆ liquid scintillators

Sample	Measurement		
90,91,92,94,96 Zr	June-Aug. 2003		
⁹³ Zr	Oct. 2004		

Sample changer

(n,γ) Total energy detection

Improvements in the Experimental Setup & Data Analysis

•Lowest neutron sensitivity
No neutron background corrections !

(n,γ) Total energy detection

Improvements in the ExperimentalSetup & Data Analysis

•Lowest neutron sensitivity in No neutron background corrections !

(n,n) (n,γ)

Zr isotope samples

	Isotopic content (%)						
Sample	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr	
⁹⁰ Zr	97.7	0.87	0.6	-	0.67	0.16	
⁹¹ Zr	5.43	89.9	2.68	-	1.75	0.24	
⁹² Zr	4.65	1.62	91.4	-	2.03	0.3	
⁹³ Zr*	1.5	19.0	20.0	20.0	20.0	19.0	
⁹⁴ Zr	4.05	1.18	1.93	-	91.8	1.04	
⁹⁶ Zr	19.41	5.21	8.2	_	8.68	58.5	

Admixture: Hf, Na, Mg, Al ...

* Radio isotope ($T_{1/2} = 1.5 \times 10^6$ year)

Zr isotope samples

	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr	¹⁹⁷ Au	Lead
Mass (g)	2.717	1.404	1.349	4.88	2.015	3.398	1.871	3.895
Thickness (cm)	0,127	0,065	0,062	0,37	0,091	0,151	0.025	0.09
Chemical form	ZrO ₂	Metal	Metal					
Enrichment (%)	97.7	89.9	91.4	20.0	91.8	58.5	100	Nat.

Samples 2.2 cm in diameter, 1 mm thick Stable Zr isotopes encapsulated in 0.2 mm Al can ⁹³Zr isotope encapsulated in 0.2 mm Al + 0.2 mm Ti

Chemical form:ZrO₂

⁹³Zr isotope activity 92.5 MBq

Data Analysis - ⁹³Zr yield

Resonance Analysis ⁹³Zr

Data analysis: Kernel ratios

Data analysis: Kernel ratios

The ⁹³Zr new kernels are 37% lower than the previous measurements

Data analysis

MACS: Experimental energy ranges

MaxwellianAveraged Cross Sections(MACS)

	Energy range (keV) n_TOF
⁹⁰ Zr	0.01 - 66
⁹¹ Zr	0.01 - 26
⁹² Zr	0.01 – 40
⁹³ Zr	0.01 – 7
⁹⁴ Zr	0.01 – 74
⁹⁶ Zr	0.01 – 42

The n_TOF data have to be complemented with a data library Jendl 3.3 and ENDF IV

MACS: results

MACS: results

Prelimirary

MACS:@ 30 keV

MACS in mbarn

on the basis of Hauser-Feshbach. (S. Goriely Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles)

Astrophysical implication: Abundances

Nucleus	N _O Normalized to N (Si)=10 ⁶ atoms	N _s / N _o % Old MACS	N _s / N _o % n_TOF MACS
⁹⁰ Zr	5.546	0.789	0.844
⁹¹ Zr	1.21	1.066	1.024
⁹² Zr	1.848	1.052	0.981
⁹⁴ Zr	1.873	1.217	1.152
⁹⁶ Zr	0.302	0.842	0.321

Solar abundances, N_{\odot} , from Lodders 2009, accuracy 10%

The s-abundances, N_s, are calculated using the TP stellar model for low mass AGB star (1.5 - 3 M_{\odot}), accuracy 8%.

Old MACS are from the KADoNiS data base 2008. Since 2009 the databases has been update at the new n_TOF data, as the new data are relased.

Astrophysical implication: Zr/Nb

A lower ${}^{93}Zr(n,\gamma)$ value means that more ${}^{93}Zr$ is produced. After radiogenic decay of ${}^{93}Zr$ more Nb will result.

The final result is ~50% more Nb!

Elemental Nb and Zr abundances in SiC

Mass, Metallicity \bigcirc 1.8, 0.01 ~ 0.7 Z_{\odot} 3, $0.01 \sim 0.7 Z_{\odot}$ 3, 0.02 ~ 1.5 Z_☉ 3, $0.03 \sim 2 Z_{\odot}$ $M_{mix}(M_{\odot})$ 0.002 0.0005 0.0002

With the new ${}^{93}Zr(n,\gamma)$ cross section the problem is solved.

n_TOF new spallation target

✓ Optimized for a better cooling
 ✓ two different circuits for cooling and moderation

The borated water as moderator reduces the background of a factor 10!! See Claudia Lederer talk 01/09

Work Sector of Type A

The main problem in the 93 Zr measurement was the radioprotection issue. Since 2010 the n_TOF experimental area was transformed in work sector type A. It will allow us to measure the 93 Zr without double canning (Ti + AI).

Conclusion

- New neutron capture measurements on ^{90,91,92,93,94,96}Zr were done at n_TOF facility
- MACS calculated from the new data for most of the Zr isotopes are lower than the previous MACS
- ◆ MACS uncertainty improved by a factor 2
- The new MACS work much better when used in the TP stellar model to calculate the s-process abundances, proving the validity of the model
- We will propose a new neutron capture measurement for the ⁹³Zr at n_TOF facility. Thanks to the upgrade of the facility now it should be possible to extend the neutron energy range measured at 100 keV.