Is it Possible to Study ⁴⁴Ti(α ,p)⁴⁷V Reaction with Radioactive Target?

Tariq Al-Abdullah^(1,2),

- D. Bemmerer⁽²⁾, K. Schmidt⁽²⁾,
- D. Schumann⁽³⁾, R. Dressler⁽³⁾, M. Ayranov⁽³⁾

¹Hashemite University, Zarqa-Jordan, ²HZDR, Dresden-Germany, ³PSI, Villigen-Switzerland

PSI 31.08.2011, Villigen/Switzerland

Mitglied von

Main Points

- □ The Importance of ⁴⁴Ti in Supernovae.
- **The Reaction Rate for** ${}^{44}\text{Ti}(\alpha, p){}^{47}\text{V}$ at Astrophysical Energies.
- □ Problems with Radioactive ⁴⁴Ti Target.
- □ The Safety Concerns of the Experiment.
- □ Suggestions and Future Plans.

The importance of ⁴⁴Ti in supernovae.

- ⁴⁴Ti, $t_{1/2}$ =58.9 ± 0.3 yr⁽¹⁾.
- Its ${}^{44}\text{Ti} \xrightarrow{\text{EC}} {}^{44}\text{Sc}$, 78.4 & 67.9 keV.
- ${}^{44}Sc \xrightarrow{\beta^+ + EC} {}^{44}Ca$, γ -lines at 1157 keV.
- 1.157 MeV has been observed from Cassiopeia A by X-rays & γ -rays telescopes [CGRO, RXTE, INTEGRAL] ⁽²⁾.
- The ejected ^{44}Ti is estimated: $1.6^{\text{+}0.6}_{\text{-}0.3}\times10^{\text{-}4}M_{\odot}$ ⁽³⁾
- At T_{g} =4.3, its abundance grows after α -rich freezeout.
- The yield is sensitive to: ${}^{40}Ca(\alpha,\gamma){}^{44}Ti, {}^{44}Ti(\alpha,p){}^{47}V,$ ${}^{44}Ti(\alpha,\gamma){}^{48}Cr, {}^{45}V(p,\gamma){}^{46}Cr.$
- L.-S. The⁽⁴⁾: $\frac{44\text{Ti}(\alpha,\mathbf{p})^{47}\text{V}}{1}$ is the most important reaction.
 - (1) I. Ahmad et al, PRC 74, 065803 (2006).
 - (2) A. f. lyudin et al, Astron. Astrophys. 284, L1 (1994)
 - (3) M. Renaud et al., Astrophys. J. 647, L41 (2006)
 - (4) L.-S. The *et al.*, Astropyss. J. 504, 500 (1998)

1083

The reaction rate for {}^{44}\text{Ti}(\alpha, p){}^{47}\text{V} at astrophysical energies.

• This reaction is measured in inverse kinematics by:

• Energy range: 5.7 MeV $\leq E_{c.m.} \leq$ 9 MeV, using a beam of ⁴⁴Ti

• The estimated reaction rate is a factor of <u>2</u> greater than the theoretical calculations, with uncertainty of 37%.

The reaction rate for {}^{44}\text{Ti}(\alpha,\mathbf{p}){}^{47}\text{V} at astrophysical energies.

> Old Gamow peak: An overlap between MB-distribution and Coulomb barrier penetration [Rauscher et al, PRC 81, 045807 (2010).

- \succ Not good if α -width is changing rapidly with the Coulomb barrier.
- > The true Gamow Window $N_A \langle \bar{\sigma}_{jk}^{\mu} v \rangle = \frac{3.732 \times 10^{10}}{\hat{A}_j^{1/2} T_9^{3/2}} \times \int_0^\infty \bar{\sigma}_{jk}^{\mu} E_j^{\mu} \exp\left(-11.605 E_j^{\mu}/T_9\right) dE_j^{\mu},$ (4)
- The reaction rate is re-evaluated R. D. Hofmann; [Astronphys. J. 715, 1383 (2010)].

• The most relevant temp. range is $1 \le T_g \le 5$.

- Cross sections at lower energies dominate both the rates and uncertainties.
- Larger uncertainty in the rate (±3) \rightarrow large uncertainty in ⁴⁴Ti synthesis

□ The planned radioactive ⁴⁴Ti target.

- A 10-50 MBq radioactive target will be prepared in PSI, [D. Schumann, ERAWAST-PSI].
- For 10 MBq, D=20 mm, T_{1/2}=58.9 yr, using

$$N = \frac{A}{L}, \qquad L = \frac{\ln 2}{T_{1/2}}$$

- The thickness of the ($^{44}\text{TiO}_2$) target is almost 45 nm, or 11 μ g/cm².
- 0.2 μ m-Gold will coat the radioactive area.
- Stainless steel support: 0.5 mm thick, 27 mm in diameter.
- High purity target is required, no impurities from ⁴⁶⁻⁵⁰Ti isotopes.

Possible Experimental Setup

- ION-Beam Center at HZDR.
- Q-Value = -- 0.41 MeV.
- α -beam at 4-7 MeV, Angle = 55°. Current = 1 μ A for 1-2 weeks.
- 25 μ m Al-foil is used to stop α -particles before the detector.
- 100-300 µm PIPS [Partially Implanted Passivated Silicon].

Can ⁴⁴Ti(α , *p*)⁴⁷V be performed?

• Starting with simple setup [500 μ m-Ortec Si-detector with AmCmPu source].

• For 241 Am main peak, E = 5486 ± 21 keV.

Can ⁴⁴Ti(α ,p)⁴⁷V be performed?

• AmCuPu-source and ⁴⁴Ti (83 kBq) are both observed by the 500 μ m Sidetector

- A strong increase in the background continuum; 1 % to 94 % counting rate.
- Continuum ends point is at almost 1.7 MeV.
- IS IT GOOD?

Can ⁴⁴Ti(α , p)⁴⁷V be performed?

- Detecting the protons after the reaction.
- Using Lise & Trim codes.
- Starting at E_{α} = 4 MeV \rightarrow Gold $\rightarrow E_{\alpha}$ = 3.82 ± 0.04 MeV
- E_{ρ} = 2.8 MeV \rightarrow Au & Al \rightarrow E_{ρ} = 2.12 \pm 0.08 MeV.

Similarly for $E_q = 6$ MeV,

- Protons peaks do not overlap with the continuum.
- PIPS detectors can be used.
- The height of the peaks is in random units.

□ Problems with radioactive ⁴⁴Ti target.

- Using the 83-kBq ⁴⁴Ti source.
- The relation between the activity and the distance for the continuum background is:

$$A = 11473 \times \frac{1}{r^2} + 247$$
 [c/s].

• The estimated continuum background for 10MBq-target is:

Dist.	Rate	10 MBq	
[cm]	[c/s]	[c/s]	
5	706	5.5E+4	
10	362	1.4E+4	

□ Problems with radioactive ⁴⁴Ti target.

- Several runs with Am and ⁴⁴Ti sources are collected at the same geometry.
- Estimating the proton peaks in 300 μ m Si-detector. E_{α} = 4, 4.5, 5, 6, 7 MeV.
- The background from the cosmic rays hide peaks for $E_{\alpha} \leq 4.5$ MeV.

□ The Feasibility of the ${}^{44}\text{Ti}(\alpha, p){}^{47}\text{V}!$

- Adopting Rauscher calculations, PRC 81, 045807 (2010).
- Gamow Windows are re-calculated for $T_g = 2, 3, 5$.
- Talys code is used. [A. J. Koning, AIP 769, 1154 (2005)]
- Three new points are very probable to measure. Two more are question marks.

Can ⁴⁴Ti(α , *p*)⁴⁷V be performed?

- Estimating the yield at 5 & 10 cm between the target and the detector:.
- Efficiency: 5 cm \rightarrow 9.6E-3, 10 cm \rightarrow 2.4E-3.
- The reaction is feasible for $E_{lab} \ge 4 \text{ MeV}$.

E _{lab}	σ	Dist. 5-cm	Dist. 10-cm	
[MeV]	[mb]	[Count/hr]	[Count/hr]	
3.5	8.96E-4	1.6	0.4	
4	1.11E-2	20.3	5.8	
5	4.59E-1	84.1	21.0	
6	6.26E+0	1.15E+4	2.87E+3	
7	3.79E+1	7.27E+4	1.82E+4	

□ The Safety Concerns of the Experiment.

- The sputtering of the radioactive atoms from the target.
- Several calculations are made using TRIDYN_FZD code*. [*Dr. M. Posselt, HZDR*] ^{*}[W. Möller & W. Eckstein, NIM B 2, 814 (1984)].

• Parameters: Fluence = $10^{19} \text{ atoms/cm}^2$ [1 μ A-10 days], NH = 10^8 [quality], $E_{\alpha} = 6.0 \text{ MeV} @ 55^{\circ}$, TiO₂ [450 °A], Layers [<u>Au varying, Cr = 50 °A</u>]

Au- Thick	20	50	200	500	1000	2000
Depth	-105.7	-91.2	-69.6	-58.7	-55.8	-38.8
Ti	24359	17058	7284	920	34	9
0	219922	216518	79827	8160	271	16
Cr	84656	83628	33066	5106	389	196
Au	34417	84578	241035	320695	337291	334982
Total	435354	401782	361212	334881	337985	335248

□ The Safety Concerns of the Experiment.

- For our case: when the thickness of the Gold is $0.2 \,\mu m$.
- The depth profiles of the components for 10¹⁹ ions/cm² fluence shows a strong mixing between the atoms at all depths.
- Decreasing the fluence will rapidly decrease the sputtered ⁴⁴Ti atoms.

□ The Safety Concerns of the Experiment.

Estimating the amount of the absorbed dose [Sv/h].

For 10 MBq 44Ti/44Sc source

Dose rate at 1 m distance from the source

In case of swallowing the source

10 MBq ⁴⁴Ti/⁴⁴Sc source

- \rightarrow 66 mSv $\leftarrow \rightarrow$ total dose
- \rightarrow If it is not digested, the hazard is small.

□ Suggestions and Future Plans.

- Measuring the sputtering yield experimentally with an inert target.
- An inert target is prepared and available, [D. Schumann, PSI].
- The target has same properties as the radioactive one.
- Sputtered atoms will be collected on a catcher, [¹²C, 0.5-1 μ m].
- A Secondary Ion Mass Spectroscopy (SIMS) technique.
- \rightarrow Analyze the composition of the target surface and the catcher.

□ Suggestions and Future Plans.

• The continuum background from the cosmic rays can be reduced with using a telescope-detection system.

- Two particle detectors PIPS; ΔE (25 μ m) & E (300 μ m).
- More PIPS detectors inside the chamber at different reaction angles will be good.

- Monte-Carlo simulation; GEANT 4.
- Calculate the efficiency of the detectors.
- Estimate the height of the peaks.
- Reduce the background.

- The experiment can not be performed until:
 - **Getting the 10-50 MBq 44Ti-target.**
 - \succ ~MBq is high \rightarrow several permissions and paper works.
 - > Quite a few tools need to be available.
 - > More than a few test runs must be made.

□ Summary & Conclusion

• The ${}^{44}\text{Ti}(\alpha, p){}^{47}\text{V}$ reaction is possible with:

• Look for promising results that are better than those from radioactive beam facilities.

