2nd workshop on Exotic Radionuclides from Accelerator Waste for Science and Technology (ERAWAST II)

The ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction studied by activation

02/09/2011

Konrad Schmidt^{1,2},

Chavkat Akhmadaliev¹, Michael Anders¹, Daniel Bemmerer¹, Konstanze Boretzky³, Antonio Caciolli⁴, Zoltán Elekes¹, Zsolt Fülöp⁵, György Gyürky⁵, Roland Hannaske¹, Arnd Junghans¹, Michele Marta^{1,3}, Ronald Schwengner¹, Tamás Szücs⁵, Andreas Wagner¹, and Kai Zuber² — ¹Helmholtz-Zentrum Dresden-Rossendorf (HZDR) — ²TU Dresden — ³GSI Darmstadt — ⁴INFN Padua, Italy — ⁵ATOMKI Debrecen, Hungary

Supported by DFG (BE 4100/2-1)

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

Introduction

- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

The ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction - Introduction

Supernova remnant Cassiopeia A

Image was taken with the NASA/ESA Hubble Space Telescope and edited by Fesen and Long 2006

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

DRESDE

Experimental Nuclear Astrophysics Workshop, Dresden (D), Apr 28-30, 2010

Roland Diehl

Member of the Helmholtz Association

The ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction - Introduction

The mass cut

- Diehl et al. 1998:
 - The abundance of ⁴⁴Ti and ⁵⁶Ni as a function of mass inside a $25M_{\odot}$ star is shown
 - The mass cut is shown as the solid vertical line
 - Everything interior to the mass cut becomes part of the neutron star
 - Everything exterior may be ejected, depending on how much mass falls back onto the neutron star during the explosion
- The position of the mass cut determines, if ⁴⁴Ti is detectable in a Supernova
- $T_{1/2}({}^{56}\text{Ni}) = 6.08 \text{ d}$
- T_{1/2}(⁵⁷Ni) = 35.6 h
- $T_{1/2}(^{44}\text{Ti}) = 58.9 \text{ y}$

Mass profiles of ⁴⁴Ti and ⁵⁶Ni for a $25M_{\odot}$ core-collapse supernova model (adapted from Hoffman et al. 1995)

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

Supernova signal: ⁴⁴Ti in Cassiopeia A

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

The ⁴⁰Ca(α,γ)⁴⁴Ti reaction - Weak ⁴⁴Ti sources by D. Schumann (PSI) Preparation and structure of weak ⁴⁴Ti sources

- more details:
 - SCHUMANN, D.; NEUHAUSEN, J.: Accelerator waste as a source for exotic radionuclides. In: J. Phys. G: Nucl. Part. Phys. 35 (2008) 014046
 - SCHUMANN, D.; SCHMIDT, K.; BEMMERER, D.: Characterization and Calibration of weak ⁴⁴Ti sources for astrophysical applications. In: *PSI Annual Report 2010*

Member of the Helmholtz Association Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

- preparation:
 - by vaporating radionuclide-containing diluted nitric acid on tantalum plates
 - 5 nm chromium serve as adherent layer for the protective layer
 - covered with 200 nm thick **gold** layer afterwards in order to protect the surface
- structure:

The ⁴⁰Ca(α,γ)⁴⁴Ti reaction - Weak ⁴⁴Ti sources by D. Schumann (PSI) Characterization of weak ⁴⁴Ti sources with imaging plates

Irradiation of the imaging plate

Scanning the imaging plate

- Resolution: 5 µm
- Gradation: 65,536 (16 bit)
- Plot the data

http://home.fujifilm.com/info/products/science/toc.html

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

The ⁴⁰Ca(α,γ)⁴⁴Ti reaction - Weak ⁴⁴Ti sources by D. Schumann (PSI) Characterization of weak ⁴⁴Ti point sources

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

The ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction - Weak ${}^{44}Ti$ sources by D. Schumann (PSI) Characterization of weak ⁴⁴Ti plane sources

The ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction - Weak ${}^{44}Ti$ sources by D. Schumann (PSI)						
Calibration of weak ⁴⁴ Ti	source	es				
3915 120 001 Ti-44- 3916 120 001 Ti-44- 3917 120 001 Ti-44- 3918 120 001 Ti-44- 3919 120 001 Ti-44-	P-60 P-160 P-690 F-130 F-320		used high-precise calibration source	sion es underground laboratory – talk by Daniel Bemmerer		
	Source	A [Bq] (PSI)	A [Bq] (HZDR)	A [Bq] (Felsenkeller Dresden)		
A Strange	P-60	46 ± 9	35.5 ± 0.4	_		
	P-160	151 ± 15	67.5 ± 0.8	63 ± 4		
	F-130	146 ± 15	137.1 ± 1.7	_		
	F-320	310 ± 30	225 ± 3	_		
	P-690	600 ± 60	498 ± 6	_		
	 referen 01/01/2 	ce date: 2010				

Member of the Helmholtz Association Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

Ion Beam Center at HZDR

Beam energy calibration of 3 MV Tandetron

- Nominal ion energies can be read from accelerator E_{nom} = e U_{ion}
- Incident ion energy E_0 at the target **differ** from nominal ion energy E_{nom}
- Calibration by Trompler et al. 2009 (diploma thesis):
 - resonances used: ²⁷AI(p,γ); ¹⁴N(p,γ); ¹⁵N(p,αγ)
 - energy range: 0.5 to 2.0 MeV
 - fit function: $E_0 = (1.017 \pm 0.002) \cdot E_{\text{nom}} (5.2 \pm 1.0) \text{ keV}$
 - statistical error at 4.5 MeV: $\Delta E_0 = 10 \text{ keV} (0.2 \%)$
- New calibration of present work (2010):
 - resonances used: ${}^{27}AI(p,\gamma)$; ${}^{40}Ca(p,\gamma)$; ${}^{40}Ca(\alpha,\gamma)$
 - energy range: up to 4.5 MeV
 - fit function: $E_0 = (1.0142 \pm 0.0003) \cdot E_{nom}$
 - statistical error at 4.5 MeV: $\Delta E_0 = 1.3 \text{ keV} (0.03 \%)$
- New calibration (without offset) includes α particles

Member of the Helmholtz Association

Resonances for beam energy calibration of 3 MV Tandetron

Member of the Helmholtz Association

Comparison of old and new calibration of 3 MV Tandetron

Member of the Helmholtz Association

Beam line and detectors

Member of the Helmholtz Association

Target chamber

 \odot

0

6

Member of the Helmholtz Association

DRESDEN

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

Important resonances and approach

^{02/09/2011}

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

Literature values

10 ⁰	Reference	$\neg E^{ m lab}_{lpha}$ [keV], .	ωγ	
	Dixon et al. 1977 (Nat. Res. Council of Canada)	4523, 4510 and 4497	(8.3 ± 1.3) eV	(16 %)
ction rate	Vockenhuber et al. 2007 (DRAGON at TRIUMF, Canada)	4523, 4510 and 4497	(12.0 ± 1.2) eV	(10 %)
	Hoffman et al. 2010 (Lawrence Livermore Nat. Lab.)	4523, 4510, 4497,	(16 ± 3) eV	(19 %)
the most of the mo	Cooperman et al. 1977 (California State Univ., Fullerton)	3618 ± 6	(0.33 ± 0.07) eV	(21 %)
e of the	Vockenhuber et al. 2007	3618 ± 6	(0.40 ± 0.08) eV	(20 %)
Shar	Cooperman et al. 1977	3584 ± 6	$(0.52 \pm 0.10) \text{ eV}$	(19%)
10 ⁻²	Cooperman et al 1977	3722 ± 6	$(0.33 \pm 0.12) \in V$	(18 %)
1 2 3 1 [*]	Vockenhuber et al. 2007	3722 ± 6	$(0.46 \pm 0.11) \text{ eV}$	(24 %)
457 W	Cooperman et al. 1977	2758 ± 22	(0.013 ± 0.003) eV	(23 %)
	Vockenhuber et al. 2007	2758 ± 22	(0.013 ± 0.007) eV	(44 %)
10 ⁻² 1 2 3 4 5 6 7 8 9 10 T (10 ⁹ K)				JR

Member of the Helmholtz Association

- Schematic representation of energy distribution functions f(E,d) for a beam of charged particles as they move through an absorber.
- FWHM of the energy distribution corresponds to energy straggling
- Best approximation by Bohr 1915:

FWHM =
$$1.20 \times 10^{-12} \sqrt{Z_p^2 Z_t N d}$$

Measure the sum of all 3 resonance strengths at 4.5 MeV

13 keV each

Member of the Helmholtz Association

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

The ⁴⁰Ca(α,γ)⁴⁴Ti reaction - Results

02/09/2011

Number of nuclei and activity as a function of time

Offline spectra from HZDR and Felsenkeller (below 47 m of rock)

Member of the Helmholtz Association

Structure scans before and after activation by ${}^{40}Ca(p,\gamma){}^{41}Sc$ reaction

- about 24 hours activation with a current of 1.5 μA at the water cooled target
- Structure scans before and after activation have just negligible distinctions
- Conclusion: Target layer stays stable during the activation

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

TECHNISCHE UNIVERSITÄT

Problem: unknown ratio of O to Ca in CaO targets

CaO_n

- Yield Y_p of ${}^{40}Ca(p,\gamma){}^{41}Sc$ reaction to determine ratio *n* of O to Ca in CaO
- Resonance strength $\omega \gamma = (140 \pm 15) \text{ meV} (11\%)$ by Zijderhand et al. 1987

 $\mathcal{E}_{\text{eff,p}} = \frac{\lambda_r^2}{2} \cdot \frac{\omega \gamma}{Y_p}$ = effective stopping power

$$\mathcal{E}_{\text{eff,p}} = \frac{\mathrm{d} E}{\mathrm{d} x} \Big|_{\text{Ca,p}} + n \cdot \frac{\mathrm{d} E}{\mathrm{d} x} \Big|_{\text{O,p}}$$
$$n = \frac{n_{\text{O}}}{n_{\text{Ca}}} \implies \frac{\Delta \mathcal{E}_{\text{eff}}}{\mathcal{E}_{\text{eff}}} \Big|_{\alpha} = 12\%$$

 With this uncertainty (12 %) we find the sum of resonance strengths for the ⁴⁰Ca(α,γ)⁴⁴Ti reaction (relative to ⁴⁰Ca(p,γ)⁴¹Sc):

$$\omega \gamma = \frac{Y_{\alpha}}{\lambda_r^2 / 2} \cdot \varepsilon_{\text{eff},\alpha} = (12.0 \pm 2.0) \text{ eV} \qquad (17\%)$$

- Effective Stopping power *ε* can be improved by ERDA (Elastic Recoil Detection Analysis) measurement of *n*. – planned in future
- Result of present work assuming O:Ca ratio of 1:1:

$$\omega \gamma = \frac{Y_{\alpha}}{\lambda_r^2 / 2} \cdot \varepsilon_{\text{eff},\alpha} = (12.0 \pm 0.8) \,\text{eV} \qquad (7 \,\%)$$

Solution 1

Solution 2

DRESDEN

TECHNISCHE UNIVERSITÄT

Results and Outlook

Dixon et al. 1977 Vockenhuber et al. 2007 result of present work, assuming O:Ca ratio of 1:1	triplet	$ωγ = (8.3 \pm 1.3) eV$ $ωγ = (12.0 \pm 1.2) eV$ $ωγ = (12.0 \pm 0.8) eV$	(16 %) (10 %) (6.7 %)
Cooperman 1977 Vockenhuber et al. 2007 present work	3584 keV	21 % uncertainty 20 % uncertainty under analysis	
Cooperman et al. 1977 Vockenhuber et al. 2007 present work	3618 keV	19 % uncertainty 23 % uncertainty under analysis	

TECHNISCHE UNIVERSITÄT DRESDEN

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

DRESDEN concept

- Introduction
- Weak ⁴⁴Ti sources by D. Schumann (PSI)
- Setup at HZDR
- State of the art
- Results
- Summary

Member of the Helmholtz Association

- Five ⁴⁴Ti calibration sources supplied by PSI have been studied. First, maps of activity distribution have been created. Furthermore the activities have been determined by γ-ray spectrometry. Hence there are standards which are calibrated to 1.2 %.
- Astrophysically interesting resonance triplet of the ⁴⁰Ca(α,γ)⁴⁴Ti reaction at 4.5 MeV has been studied with CaO targets.
- ⁴⁴Ti activity has been measured in the underground laboratory Felsenkeller Dresden.
- Sum of resonance strengths at laboratory energies of 4497, 4510 and 4523 keV has been determined:

Reference	Activated <i>E</i> _{lab} [keV]	ωγ	
Dixon et al. 1977	4523, 4510 and 4497	(8,3 ± 1,3) eV	(16 %)
Vockenhuber et al. 2007	4523, 4510 and 4497	(12,0 ± 1,2) eV	(10 %)
Hoffman et al. 2010	4523, 4510, 4497,	(16 ± 3) eV	(19 %)
present work relative to $^{40}Ca(p,\gamma)$	4523, 4510 and 4497	(12,0 ± 2,0) eV	(17 %)

- Uncertainty will be reduced by ERDA to determine ratio of O to Ca.
- Result of present work assuming O:Ca ratio of 1:1 is (12.0 ± 0.8) eV (7 %).
- Outlook: Study resonances at 3.5 MeV (under analysis) and 2.8 MeV (next year).

Thank you for your attention.

Member of the Helmholtz Association

Member of the Helmholtz Association

reduced level scheme & measured in beam pulse height spectrum ${}^{44}Ca(\alpha,\gamma){}^{48}\text{Ti}$

Data by Evaluated Nuclear Structure Data File

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

reduced level scheme & measured in beam pulse height spectrum ¹⁸O(α ,n γ)²¹Ne

Data by Evaluated Nuclear Structure Data File

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

reduced level scheme & measured in beam pulse height spectrum ${}^{19}F(\alpha,n\gamma){}^{22}Na$

Data by Evaluated Nuclear Structure Data File

Member of the Helmholtz Association

Institute of Radiation Physics | Division of Nuclear Physics | http://www.hzdr.de

Impact Analysis

Yield

Resonance strenght

Y =yield $Y = \frac{N_{\gamma}}{N_{\alpha}} = \frac{N_{\text{det}} / \eta_{\text{direkt}}}{I_{\alpha} t / e}$ $N_{\gamma} = \text{number of emitted photons}$ $N = \text{number of incident } \alpha_{-} \text{ partial}$ N_{α} = number of incident α - particles $N_{\rm det}$ = number of detected photons

- $\eta_{\text{direkt}} = \text{efficiency of the detector}$
 - I_{α} = intensity of the α beam
 - t =measuring time
 - e = elementary charge

 $\omega \gamma = Y \varepsilon_r \left(\frac{\lambda_r^2}{2}\right)^{-1}, \qquad \frac{\lambda_r^2}{2} = \frac{\pi^2 \hbar^2}{E^{\text{lab}} m} \left(\frac{m_\alpha + m_{\text{Ca}}}{m_\alpha}\right)^2$ $E_{\alpha}^{\text{lab}} = \text{laboratory beam energy}$ $\omega \gamma$ = resonance strength \mathcal{E}_r = effective stopping power at resonance energy m_{α} = projectile mass λ_r = de Broglie wavelength of the resonance $m_{C_2} = \text{target mass}$

Narrow resonance reaction rate

$$N_{A} \langle \sigma v \rangle = N_{A} \left(\frac{2\pi}{\mu k_{B} T} \right)^{3/2} \hbar^{2} \exp \left(\frac{-E_{\alpha}^{\text{lab}}}{k_{B} T} \right) \omega \gamma \qquad \qquad N_{A} = \text{Avogadro constant}$$

$$M_{A} \langle \sigma v \rangle = \text{thermonuclear reaction rate}$$

$$\mu = \text{reduced mass of the projectile - target system}$$

$$k_{B} = \text{Boltzmann constant}$$

$$T = \text{temperature}$$

$$\exp \left(\frac{-E_{\alpha}^{\text{lab}}}{k_{B} T} \right) = \text{Maxwell - Boltzmann factor}$$

ILIADIS, C.: Nuclear Physics of Stars. Wiley-VCH (2007)

DRESDEN