Goethe-Universität Frankfurt am Main

Stellar Production and Destruction Rates of ⁶⁰Fe

September 2nd, 2011

Tanja Heftrich^{*1}, Ethan Uberseder², Thomas Aumann⁴, Konstanze Boretzky³, Michael Heil³, Aleksandra Kelic³, Ralf Plag¹, Rene Reifarth¹, Valentina Ricciardi³, Haik Simon³, Kerstin Sonnabend¹, Helmut Weick³, Michael Wiescher², and the s389 collaboration

¹Goethe University Frankfurt, Germany; ²University of Notre Dame, USA; ³GSI Darmstadt, Germany; ⁴TU Darmstadt, Germany

Outline

Goethe-Universität Frankfurt am Main

Astrophysical Motivation

• Experimental Setup

• First Results

• Future Plans & Summary

Astrophysical Motivation

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

INTEGRAL (*INTE*rnational Gamma RAy Laboratory) observed characteristic ⁶⁰Co decay lines at 1173 & 1332 keV produced by β -decay from ⁶⁰Fe

 scaled characteristic distribution of ⁶⁰Fe along the galactic plane based on 60 Fe/26 Al

measurements

Nucleosynthesis of the Elements

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

neutron number

- slow neutron capture process
- seed isotopes: ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe
- neutron capture and β^- decay
- neutron capture rate is small relative to the beta decay rate
- about 50% of the element abundances beyond iron are produced via s-process
- synthesizing elements between iron & bismuth

Experimental Astrophysics

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Provided we know about the nuclear reaction rates for production and destruction we will get information on:

temperature & density

- s-process:
 - main component & weak component
- main component:
 - He shell burning phase in AGB stars
 - nuclei with A = 90 209 are mainly produced

- weak component
 - massive stars (20-25 M_{\odot})
 - mainly nuclei A = 56 90 are produced
 - there are two phases:
 - 1st phase: He core burning

 ρ_{n} = $10^6\,\text{cm}^{-3}$ at kT= 25 keV

• 2^{nd} phase: C shell burning $\rho_n = 10^{12} \text{ cm}^{-3}$ at kT= 90 keV

$$\frac{(n,\gamma) - ratio}{\beta^- - ratio} \approx 10$$

Production and Destruction of ⁶⁰Fe

Experimental Astrophysics

Beam Production

Experimental Astrophysics

- length: 120m
- energy of particles: 20% speed of light ⇒ 11,4 AMeV

- U≈U_{max}: distance between tubes
 => acceleration
- U=0: field-free distance
 => drift
 - U≈U_{max}: distance between tube
- t with reversed polarity
 - => new acceleration

Beam Production

Experimental Astrophysics

- pulse duration varies from 1 to 400 µs
- to get higher beam intensity several pulses are injected into SIS
- 90% speed of light \Rightarrow 1000 AMeV
- this energy can be reached for protons as well as for uranium

Beam Production

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

FRagment Seperator:

- seperates the isotopes of interest
- energy of particles: 535 AMeV
- intensities of 10⁷ particles/s
- reduction after FRS: 10⁴-10⁵ particles/s

R³B/LAND Setup

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Tanja Heftrich

ERAWAST II 2011 - Stellar Production and Destruction Rates of ⁶⁰Fe

Coulomb Dissociation

Experimental Astrophysics

Coulomb Dissociation

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Advantages:

experiments with radioactive nuclei are possible

Disadvantages:

indirect method

 \Rightarrow needs theoretical input

 \Rightarrow data for verification

- nuclear interaction must be subtracted
- bad energy resolution which is needed for the (γ,n) ↔ (n,γ)
- multipole admixtures must be determined

⁶⁰Fe(γ,n)⁵⁹Fe at R³B/LAND Setup

Experimental Astrophysics

Incoming Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Scintillator8

- plastic scintillator
- 2 photomultipliers
- time measurement

POSition detector

- quadratic plastic scintillator
- 4 photomultipliers
- time measurement

Position Sensitive silicon Pin diode

- 2D position
- charge Z of a passing heavy ion can be obtained via ΔE (Bethe-Bloch formula)

Incoming Identification

Experimental Astrophysics

Outgoing Z Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Time of Flight Wall & New Time of Flight Wall

- ion detector with plastic scintillator and photo-multiplier tubes
- TFW & NTF identify the position, the outgoing Z and the TOF of reaction products

Outgoing Z Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

ERAWAST II 2011 - Stellar Production and Destruction Rates of ⁶⁰Fe

Neutron Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Large Area Neutron Detector

- sandwich detector of active & passive material
- 10 planes and every plane contains 20 modules
- 2 x 2 m with a depth of 1 m
- conversion of neutrons into protons via reactions in iron and the secondary protons are detected with plastic scintillators
- good position & time resolution and high efficiency

Neutron Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

ERAWAST II 2011 - Stellar Production and Destruction Rates of ⁶⁰Fe

First Results

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

number of breakup events ≈ 70

a complete measurement is ensured by the determination of:

- mass determination of outgoing particle
 - \Rightarrow distinguish $\frac{A}{7}$ values: ⁵⁹Fe & ⁶⁰Fe
- identification and momentum vector of each ion before reaction
- identification and momentum vector of each ion after reaction
- for energy dependent cross section, the excitation energy needs to be precisely known

=> require precise momentum vectors and angles

Doubled Silicon Strip Detector:

- Si sensor size: 72 mm x 40 mm
- thickness: 0.3 mm
- x-plane: 640 strips & y-plane: 384 strips
- measures position of fragments with a resolution of \approx 110 μ m

Excitation Energy

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

- R³B/LAND setup:
 - \Rightarrow many observables can be measured e.g.: TOF, position and ΔE
 - ⇒ other quantities like the excitation energy are only accessible via an event-by-event reconstruction
- the invariant masses of the excited incoming and outgoing systems are given by the following expressions:

$$M_{inv}^{inco\min g} = m_{projectile} + E^{*}$$
$$M_{inv}^{outgoing} = \sqrt{\left(\begin{array}{c} \sum_{i} E_{i} \\ \sum_{i} \overline{p_{i}} \end{array}\right)^{2}}$$

i:= fragments in the outgoing channel

Due to the conservation of the invariant mass, the excitation energy is expressed by:

$$E^* = \sqrt{\sum_{i} m_i^2 + \sum_{i \neq j} \gamma_i \gamma_j m_i m_j (1 - \beta_i \beta_j \cos \vartheta_{ij})} + E_{\gamma} - m_{proj}$$

⇒ the reconstruction of the excitation energy relies on the identification and tracking of all outgoing species and on the rest mass of the incoming ion

Excitation Energy

Experimental Astrophysics

$(\gamma,n) \leftrightarrow (n,\gamma)$ Cross Section

Experimental Astrophysics

Future Plans & Summary

Experimental Astrophysics

- steps of the analysis:
 - energy-dependent information about the dissociation cross section ⁶⁰Fe(γ,n)⁵⁹Fe
 - determination of ⁵⁹Fe(n,γ)⁶⁰Fe cross section by the principle of detailed balance
- nucleosynthesis simulations of the late stages of massive stars
- experiment ${}^{60}Fe(\gamma,n){}^{59}Fe$ at GSI succesfully performed
- analysis in progress

Production and Destruction of ⁶⁰Fe

Experimental Astrophysics

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

Thank you for your attention!