

Determination of the ⁶⁰Fe Half-Life - A Successful Colaboration in ERAWAST

Georg Rugel supported by DFG (EXC 153)

ERAWAST II, 29.8.-2.9.2011, Villigen

Outline

• Past Dreams at ERAWAST

• Work done

• Future DREAMS (DREsden AMS)

ERAWAST – 1st Exploratory Workshop 15th-17th Nov 2006

ERAWAST – 1st Exploratory Workshop 15th-17th Nov 2006

Adding carrier (5mg added at time of iron extraction)

Absolute AMS measurement

AMS relative to a standard

At this workshop:

Measurement at PSI

ICP-MS (instrument: Nu Plasma) FZ Karlsruhe

Still high background problems to measure iron isotopes

KARLSRUHER NUKLIDKARTE

СНАRT OF THE NUCLIDES, 7th Edition 2006 CARTE DES NUCLÉIDES, 7^{thme} Edition 2006 CARTA DE NUCLEIDOS, 7^a Edición 2006 Таблица радионуклидов, 7-е издание 2006 核素图,第7版

J. Magill¹, G. Pfennig², J. Galy¹

 ¹ European Commission – DG Joint Research Centre – Institute for Transuranium Elements P.O. Box 2340, 76125 Karlsruhe, Germany
 ² formerly Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft
 P.O. Box 3640, 76021 Karlsruhe, Germany

© European Communities, 2006

Status T_{1/2} (⁶⁰Fe) 02/2009

10⁶ a

Fe 60

B-

m

0.1

Zn 57 40 ms	Zn 58 84 ms	Zn 59 182 ms	Zn 60 2.4 m	Zn 61 1.5 m	Zn 62 9.13 h	Zn 63 38.1 m	Zn 64 48.268	Zn 65 244.3 d	Zn 66 27.975	Zn 67 4.102	Zn 68 19.024		
β ⁺ βp 1.92; 2.53; 4.57 γ 2701*	β ⁺ γ 203; 848 βp ?	β ⁺ 8.1 γ 491; 914 βp 1.78; 2.09; 1.82; 1.38	β ⁺ 2.5; 3.1 γ 670; 61; 273; 334	β ⁺ 4.4 γ 475; 1660; 970	$\epsilon \beta^+ 0.7 \gamma 41; 597; 548; 508$	β ⁺ 2.3 γ670; 962; 1412	σ0.74 σ _{n. α} 1.1E-5 σ _{n. p} <1.2E-5	ε; β ⁺ 0.3 γ 1115 σ 66 σ ₀ α 2.0	σ 0.9 σ _{n. α} <2F υ	σ 6.9 σ _{n, α} 0.0004	σ 0.072 + 0.8 σ _{n. α} <2E-5	3	
Cu 56 78 ms	Cu 57 199 ms	Cu 58 3.20 s	Cu 59 82 s	Cu 60 23 m	Cu 61 3.4 h	Cu 62 9.74 m	Cu 63 69.15	Cu 64 12.700 h	Cu 65 30.85	Cu 66 5.1 m	Cu 67 61.9 b	25 -	
β ⁺ γ 2701; 1225; 2506: 2783	β ⁺ 7.7 > 1112	β ⁺ 7.5 γ 1454; 1448; 40	β ⁺ 3.8 γ 1302; 878; 339: 465	β ⁺ 2.0; 3.9 γ1332; 1792; 826	β ⁺ 1.2 γ 283; 656; 67; 1186	β ⁺ 2.9 γ (1173)	σ4.5	$\epsilon; \beta^{-} 0.6 \\ \beta^{+} 0.7 \\ \gamma(1346) \\ \sigma \sim 270$	σ2.17	β 2.6 γ 1039; (834) σ 140	y 185; 93; 91	ears]	
Ni 55 209 ms	Ni 56 6.075 d	Ni 57 36.0 h	Ni 58 68.0769	Ni 59 7.5 · 10⁴ a	Ni 60 26.2231	Ni 61 1.1399	Ni 62 3.6345	Ni 23 100 a	Ni 64 0.9256	Ni 65 2.52 h	Ni 66 54.6 h	10 ⁶ ye	R
β ⁺ 7.7 γ (2919; 2976; 3303)	 ε; no β⁺ γ 158: 812; 750; 480; 270 	ε β ⁺ 0.8 γ 1378; 1920; 127	σ 4.6 σ _{n. α} <0.00003	ε; β ⁺ no γ; σ 77.7 σ _n , α 14; σ _n , p 2 σ _{abs} 92	σ2.9	σ 2.5 σ _{n, α} 0.00003	σ 15	σ 0.07 ho γ σ 20	σ1.6	γ 1482; 1115; 366 σ 22	β ⁻ 0.2 no γ	9 1.5 -	K
Co 54 1.48 m 193.2 ms	Co 55 17.54 h	Co 56 77.26 d	Co 57 271.79 d	Co 58 8.94 h 70.86 d	Co 59 100	CO 60 10.5 m 5.272 a	Co 61 1.67 h	Co 62	C0 63 27.5 s	Co 64 0.3 s	Co 65 1.14 s	e hal	т
β ⁺ 4.3 γ 411; 1130; β ⁺ 7.3 1407 γ (2561)	β ⁺ 1.5 γ 931; 477; 1409	 ϵ; β⁺ 1.5 γ 847; 1238; 2598; 1771; 1038 	€ v 122: 136: 14	6 β ⁺ 0.5; 1.3 θ ⁻ γ 811 σ 140000 σ 1900	σ20.7 + 16.5	Ιγ 59 β ⁻ 0.3; θ ⁻ 1.5 β ⁻ γ 1332; γ (1332) 1173 σ 58 σ 2.0	ß7 1.2 67; 909	β 2.9 γ 1173: γ 1173; 1163: 2302; 22.5 1129	β 3.6 γ 87; 982	β 7.0 γ 1346; 931	β 6.0 γ 1142; 311; 964	U 09 0.5 -	
Fe 53 2.5 m 8.51 m	Fe 54 5.845	Fe 55 2.73 a	Fe 56 91.754	Fe 57 2.119	Fe 58 0.282	Fe 59 44.503 d	Fe 60 1.5 · 10 ⁶ a	Fe 61 6.0 m	Fe 62 68 s	Fe 63 6.1 s	Fe 64 2.0 s		t
ly 701: 1328: β ⁺ 2.8 1011: γ 378: 2340. (1620.)	σ 2.3 σ _{n σ} 1E-5	ε noγ σ13 σ _n σ0.01	σ 2.8	σ1.4	σ1.3	β 0.5; 1.6 γ 1099; 1292 σ 13	β 0.1 m	β 2.6; 2.8 γ 1205; 1027; 298	β ⁻ 2.5 γ 506 g	β 6.7 γ 995; 1427; 1299	β ⁻ γ311	0 L 1950	D
Mn 52 21 m 5.6 d	Mn 53 3.7 · 10 ⁶ a	Mn 54 312.2 d	Mn 55 100	Mn 56 2.58 h	Mn 57 1.5 m	Mn 58 65.3 s 3.0 s	Mn 59 4.6 s	Mn 60 1.77 s 0.28 s	Mn 61 0.71 s	Mn 62	Mn 63 0.25 s		
6 β ⁺ 2.6 γ 1434 936; μ 378 744	ε noγ σ70	ε γ 835 σ <10	σ 13.3	β 2.9 γ 847; 1811; 2113	β ⁻ 2.6 γ 14: 122: 692	β ⁻ 3.9 γ 811; β ⁻ 6.1 1323 γ 1447; μγ 72; e ⁻ 2433	β ⁻ 4.4; 4.8 γ 726; 473; 571	β ⁻ 5.7; 6.1 β ⁻ 8.2 γ 823; γ 823; 1969 1150; λγ 272 1532	β ⁻ 6.4 γ 629; 207	β γ 877; 942; 1299	β > 3.7 γ 356		i
Cr 51 27.70 d	Cr 52 83.789	Cr 53 9.501	Cr 54 2.365	Cr 55 3.50 m	Cr 56 5.9 m	Cr 57 21.1 s	Cr 58 7.0 s	Cr 59 1.05 s	Cr 60 0.49 s	Cr 61 0.27 s	Cr 62 209 ms		fr H
ε γ 320	a0.8	or 18	rr 0.36	$\beta^{-}2.6$	β 1.5 x 83: 26	β ⁻ 5.1 γ 83; 850; 1752: 1535	β γ 683; 126; 290; 520	β ⁻ γ 1238; 1900; 112: 663	β ⁻ 6.7 γ 349; 410; 758	8-	β γ 285; 355; 640		
0 210				, (1020)	100,20		a state of the second se		0	and the second se			

7. Auflage 2006

Motivation $T_{1/2}$ ⁶⁰Fe

Nucleosynthesis in the Galaxy

see e.g. R. Diehl, MPA

History of the Early Solar System

e.g. A. Shukolyukov and G.W. Lugmair, Science 1993

e.g: S. Mostefaoui et al., 2005

Deposits of supernova ejecta on Earth

e.g. K. Knie et al., PRL 2004; C. Fitoussi et al., PRL 2008

Drilling a hole into central part:

3.86g copper

Data	Activity ⁶⁰ Co [Bq]	60 Co atoms	Initial sample ⁶⁰ Co		
Dale			[Bq]	atoms	
01.09.1992	7 x 10 ⁹	1.8 x 10 ¹⁸	1.4 x 10 ⁷	3.5 x 10 ¹⁵	
08.07.2005	1.4 x 10 ⁹	3.3 x 10 ¹⁷	2.6 x 10 ⁶	6.4 x 10 ¹⁴	

Iron sample after the first chemical separation steps (Okt 2004)

 $A_{60}_{Fe} = \lambda_{60}_{Fe} \cdot N_{60}_{Fe} = \frac{\ln(2)}{T_{1/2}^{(60}Fe)} \cdot \frac{N_{60}_{Fe}}{N_{Fe}} \cdot N_{Fe}$

Volume: 4000 µl from master solution (~ 1nHCl) Weight: 4.036 g

+ 1000 μ l H₂O

Germanium detector

Same material used for ICP-MS (March 2008)

Avoiding geometrical corrections etc.

Calibration source (⁶⁰Co) with the same geometry: 5ml 0.1 nHCl 102.0 (± 1.5) Bq ⁶⁰Co (all uncertainties 1 sigma)

Germanium detector

GEMEINSCHAFT

Avoiding geometrical corrections etc.

Calibration source (⁶⁰Co) with the same geometry: 5ml 0.1 nHCl 102.0 (± 1.5) Bq ⁶⁰Co (all uncertainties 1 sigma)

Germanium detector

Avoiding geometrical corrections etc.

Calibration source (⁶⁰Co) with the same geometry: 5ml 0.1 nHCl 102.0 (± 1.5) Bq ⁶⁰Co (all uncertainties 1 sigma)

Germanium detector

GEMEINSCHAFT

Avoiding geometrical corrections etc.

Calibration source (60 Co) with the same geometry: 5ml 0.1 nHCl 102.0 (± 1.5) Bq 60 Co (all uncertainties 1 sigma)

Germanium detector

Build-up of the ⁶⁰Co activity

	efficienc	efficiency [%] for		
days	1.17 MeV line	1.17 MeV line 1.33 MeV line		
50-80	1.157(10)	1.000(10)	close geometry	
83–190	1.207(6)	1.065(5)	close geometry mod.	
217	0.229(7)	0.199(6)	7.55 cm; 2 mm up	
233-371	0.1546(4)	0.1365(4)	$10~{ m cm}$	
410-606	0.1563(3)	0.1380(3)	$10~{ m cm}$	
698–969	0.1565(2)	0.1383(2)	$10~{ m cm}$	
976–1212	0.1564(2)	0.1384(2)	$10 \mathrm{cm}$	

TABLE I. Efficient used for the data analysis. The column days refers always to the mean of the days after the chemical extraction. The uncertainty value given is only statistics.

ERAWAST – 1st Exploratory Workshop 15th-17th Nov 2006 Build-up of the ⁶⁰Co activity

Closer look to the decay of ⁶⁰Fe

Closer look to the decay of ⁶⁰Fe

Grow in of the ⁶⁰Co activity

Determination of N

Subsamples taken gravimetrically after opening

Master Sample (TUM) transferred to PSI

Multicollector - Inductively Coupled Plasma Mass Spectrometry MC-ICP-MS

PAUL	SCHER	RERIN	STITUT
	-1	Η	
	J		_

Department of Nuclear Energy and Safety Isotope and Elemental Analysis

⁶⁰Ni interference correction

Isotope and Elemental Analysis **Isotopic composition**

PAUL SCHERRER INSTITUT

 N_{60} Fe $A_{60}_{\rm Fe} = \lambda_{60}_{\rm Fe} \cdot N_{60}_{\rm Fe} = \frac{1}{T_{1/2}}$ ln(2)N_{Fe} $\overline{N_{\mathrm{Fe}}}$ 60 Fe) 0.0208 0.0207 0.0206 (2.0483±0.0035)×10⁻⁴ 0.0205 ⁼e-60 (at. %) 0.0204 0.0203 0.0202 0.0201 0.0200 0.0199 13.06.2008 13.06.2008 13.06.2008 13.06.2008 1,2.06.2008 HZDR

Department of Nuclear Energy and Safety

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

From N. Kivel

$$A_{60_{\text{Fe}}} = \lambda_{60_{\text{Fe}}} \cdot N_{60_{\text{Fe}}} = \underbrace{\frac{ln(2)}{T_{1/2}(^{60}_{\text{Fe}})}}_{T_{1/2}(^{60}_{\text{Fe}})} \cdot \frac{N_{60_{\text{Fe}}}}{N_{\text{Fe}}} \cdot N_{\text{Fe}}$$

TABLE II: The various contributions to the uncertainty (1 σ) of the three measurements are listed.

	Rel. Uncertainty [%]		
	stat.	syst.	
$A_{60}_{\rm Fe}$ (master sample)			
60 Co standard		1.5%	
fit	0.23%		
$N_{\rm Fe} \ (ID \ sample)$			
weighing		0.18%	
ID-ICP-MS	0.28%		
$N_{\rm ^{60}Fe}/N_{\rm Fe}~(N~sample)$			
ICPMS	0.18%		
total	0.4%	1.51%	

Combination

New Measurement of the ⁶⁰Fe Half-Life

G. Rugel, T. Faestermann, K. Knie,^{*} G. Korschinek, and M. Poutivtsev Technische Universität München, D-85748 Garching, Germany

D. Schumann, N. Kivel, I. Günther-Leopold, R. Weinreich, and M. Wohlmuther *Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland* (Received 25 March 2009; published 14 August 2009)

More details in: N. Kivel et al.

TOI: $T_{1/2}(^{60}Fe)$: (1.49 ± 0.27) Myr

Thanks to my colleagues

Georg Rugel, Thomas Faestermann, Klaus Knie, Gunther Korschinek, Mikhail Poutivtsev Technische Universität München

Dorothea Schumann, Regin Weinreich, Ines Günther-Leopold, Niko Kivel, Michael Wohlmuther Paul Scherrer Institut, Villigen, Switzerland

ERAWAST II, 29.8.-2.9.2011, Villigen

AMS (Accelerator Mass Spectrometry)

Facility DREAMS (DREsden AMS)

Shavkat Akhmadaliev, Silke Merchel, Stefan Pavetich, Georg Rugel (FWIA)

DREsden AMS setup with a 6 MV Tandetron

Thank you for your attention!

I have DREAMS

HELMHOLTZ