# Investigating chronic liver diseases and cancer using multimodal spectroscopy

#### François Le Naour

Inserm U785, Villejuif, France

**IR Workshop on Spectro-Microspectroscopy** 

Basel, 1-2 February 2011

# The liver



Glycogen synthesis & catabolism Lipids: cholesterol synthesis & catabolism, production of triglycerids, lipoprotein synthesis

Destruction of old red blood cells & leucocytes

Production of coagulation factors (I, III, V, VII, IX & XI)

Metabolism of toxins and drugs

Urea synthesis

Storage of vitamins (A, B12, D, K, E)

Storage of elements (Fe, Cu)

The liver is the organ with the most important activity in metabolism

# **Chronic liver diseases and cancer** Fatty liver Normal liver Cirrhosis / steatosis **Obesity / Diabete / Drugs |** CANCER Alcohol Agressive Viral hepatitis Low survival (HBV, HCV)

# Chronic liver diseases and cancer

#### Normal liver

#### Fatty liver / steatosis



#### Cirrhosis



## Crucial need of markers for diagnosis and prognosis

CANCER Agressive Low survival

### A multimodal spectroscopy-based approach at synchrotron SOLEIL

Liver



Cryomicrotome



**Tissue section** 



#### The synchrotron SOLEIL



Brillance Accordability

X-ray

IR UV



**Spectral markers** 

# The synchrotron SOLEIL



Light

RX

IR UV

**Characteristics** 

- Brightness
- Accordability





# Infrared microspectroscopy at SMIS beamline



## Infrared

# Infrared spectroscopy





#### The spectrum is resulting of the global biochemical composition

# Liver steatosis

#### Normal liver



#### Steatosis





Steatosis is characterized by the formation of vesicles enriched in lipids

# Liver steatosis

#### Normal liver

#### Liver steatosis



#### PT: portal tract

CLV: centrilobular vein

## Infrared microspectroscopy on steatosis





# Infrared microspectroscopy on steatosis



**Proteins** 







Lipids



Ester



Unsaturations

Cm-1



Min

Max

# Infrared microspectroscopy on steatosis



Wavenumber (cm-1)



→ Variation in lipid composition or environment



Infrared microspectroscopy

Global biochemical composition of steatotic vesicles Enrichment in esters Enrichment in unsaturated lipids Variation of the lipid environment

 $\rightarrow$  Investigating the molecular composition *in situ* 

# TOF-SIMS Time of flight-secondary ion mass spectrometry





# TOF-SIMS Time of flight-secondary ion mass spectrometry





Without any treatment of the sample Lateral resolution :  $1-2\mu m$ Mass <1500 Da  $\rightarrow$  Lipids









Optical image

Cholesterol

Red = DAG C30 Green = DAG C36

DAG : diacyl glycerol



C36:4

#### C36:3

#### C36:2

#### C36:1

#### C36:0



DAG C36 unsaturated DAG C36 saturated

**Red = Unsaturated** Green = Saturated

# Conclusions

Infrared microspectroscopy and ToF-SIMS Composition of steatotic vesicles Enrichment in cholesterol Lipids with longer acyl chains Enrichment in unsaturated lipids



#### **Biomedical relevance**

 $\rightarrow$  The steatotic vesicle is potentially highly reactive

 $\rightarrow$  The mechanisms of the selective enrichment are not known

# Liver cirrhosis



# Fibrosis Nodule





# Infrared microspectroscopy on cirrhosis



# Infrared microspectroscopy on cirrhosis



Glycogen



Long chain lipids



Collagen



Lipid esters

#### Multimodal Spectroscopy combining synchrotron-FTIR and ToF-SIMS



# Coupling IR and ToF-SIMS microspectroscopies on the same tissue section



## UV microspectroscopy Autofluorescence of tissues

# UV The beamline **DISCO** at **SOLEIL** (275 nm) Autofluorescence (280-530 nm) Tissue section

Sample holder

#### **Multimodal Spectroscopy** combining ToF-SIMS, synchrotron-FTIR and –UV microspectroscopies



## UV microspectroscopy Autofluorescence of liver cirrhosis



Fibrosis is enriched in collagen

#### Elemental composition of cirrhosis by X-ray fluorescence Beamline LUCIA at SOLEIL





## Conclusions

| Spectroscopy | Composition      | Fibrosis      |
|--------------|------------------|---------------|
| IR           | chemical         | proteins      |
| ToF-SIMS     | lipids           | sphingomyelin |
| UV           | autofluorescence | collagen      |
| X-ray        | elemental        | Ca            |

Multimodal spectroscopy allows a complete characterization of the composition of a tissue Investigating early stages of cirrhosis on clinical series



Marie-Pierre Bralet Catherine Guettier Mathieu Wavelet

Thanks for funding









SMIS Paul Dumas Christophe Sandt Ibraheem Yousef DISCO Matthieu Réfrégiers Frédéric Jamme LUCIA Anne-Marie Flank Nicolas Trcera

Delphine Debois Vanessa Petit Alain Brunelle Olivier Laprévote