

Synchrotron-based FTIR microscopy for the analysis of ancient artistic materials

M. Cotte^{1,2}

1- European Synchrotron Radiation Facility (Grenoble)2- Centre of Research and Restoration of the French Museums (Paris)

European Synchrotron Radiation Facility

IRWorkshop- Basel - 1st-2nd Feb 2011

Complex compositions – Complex analyses

The chemists and physicists' point of view

SR-µFTIR in the field of Cultural Heritage

An increasing interest...

... that may be slow down due to difficult sample preparation

... and to high competition with lab instruments

"Recent applications and current trends in Cultural Heritage Science using Synchrotron-based Fourier transform infrared micro-spectroscopy"

<u>Cotte, M</u>., Dumas, P., Taniguchi, Y., Checroun, E., Walter, P. and Susini, J., *Comptes Rendus Physique, Académie des Sciences,* (2009), **10**, 590.

Combination of FTIR with X-ray techniques

μ FTIR spectroscopy

μ X-ray analysis fluorescence diffraction absorption spectroscopy

Energy

A similar approach but different technical constraints

Experimental configuration: "reflection" vs. "transmission"

European Synchrotron Radiation Facility

Cotte, et al. J Anal Atom Spectrom 2008, 23, 820

Sample preparation, specification for μ -FTIR

<u>Polished cross-section</u>: importance of surface quality (ion milling, ultra-microtome...):
 Classical preparation for Cultural Heritage
 no signal in transmission, interference of embedding resin
 Measurement in ATR or reflection

Thin cross-section: requires a microtome to get to appropriate thickness (2-5µm)

- © Measurement in transmission: better quality of spectra
- ⊗ sample preparation can be arduous, possible interference of resin

© No interference from embedding resin

⊗ sample preparation can be arduous, possible complete loss of the sample for double-face polishing

Pressing with a micro-compression diamond cell:

requires a good positioning of the fragment before pressure

© better quality of spectra in transmission, no interference from embedding media

© structure is somewhat distorted, sample removing can be difficult

European Synchrotron Radiation Facility

Cotte, et al. e Preservation Science 2009, 6, 1

Cosmetics in Ancient times

Reed from Egypt, 13th BC Louvre Museum

In collaboration with

Ph. Walter Centre of Research and Restoration of French Museums, Paris, France P. Dumas LURE/SOLEIL, Orsay, France B. Fayard, J. Susini European Synchrotron Radiation Facility, Grenoble, France

M. Cotte et al, *Journal of Controlled Release (*2004) **97**, 269
M. Cotte et al., *Analytica Chimica Acta* (2005), **553**, 105
M. Cotte et al, *Talanta* (2006), **70**, 1136

Chemical analysis of ancient cosmetics

Identification of the ingredients by µ-FTIR:

<u>fatty soap</u>

Cotte et al, Analytica Chimica Acta (2005), 553, 105

Chemical analysis of ancient cosmetics

Reconstitution of ancient recipes

lead oxide

Hamtapla apollonis demplastres woagnes fans adminable. lead white Gpumaargntt. Luna. femunciann i. ceruffa : n. cera punica ; vn. femif ; faltanu ; un lacte mirs à pmu mascin genuit quata pte uni fertar 1.0 les ueters fertari unurerine fire ; ing. is ora fupfepta. Gutta amoniaci.s. un. Opuitetuci ; un. boia supscipta. marcato nouo mittis pozoine i infia old oil septil é. pri de l'ipuna molles mittes. cum cale cepit mittel punia aignte bi tunfa cribiatà 7 moues ce fratula linguea inceffant q ouifebn mifeeat Tfact at umalagma tuic ceruffa filir entrata fup afpangio amoue n' cestao. tuic ce ramitti fminutati fta; te fe foluit. oponif @fup prunao. muttis refina fizzi entrata cotto. Sutta amoniaci Bilegta mittes bieritzata. te galtanii pitul 10 9 maxat de cere semutia ce ponce supsepto sepata que coan à peos mista cacabi sup puinas molles renoras goin omia misceat' q oia refusa ce cacato imutano muttie opin tru an murtario è lacte ig infusii finit re unifa murta finit cui malavata fiml'on vimittis imurtario Lu uoluis 7 cop fuit iplastri ten evice. Poto ao reniculos: colose ul'ao canculu nettonica ; 1. lafinei ; 1. petrofelino ma cedonico ; 1. caffia ; 1. Jingiber ; 1. 10 fmannu fepla. Di. cempa; 1. houfico; 1. fa vifragu fepula.vi. belen fepula.vi. Strution fepla.vi. eipen fepla.vi. apifem costi fepula.vj. piret.3.

T(°C) Oil (2) + PbO (1) + water (2) (+ extra ingredients) → lead plaster

saponification of fat by PbO

European Synchrotron Radiation Facility

Cotte et al, *Talanta* (2006), **70**, 1136

Study of lead transdermal penetration

Principle of the diffusion experiment

Combination of FTIR with X-ray techniques

The ID21 beamline, ESRF

X-ray micro-spectroscopy at ID21

Ritual patina of African statuettes

Dogon statuette, beginning 20th, Quai Branly Museum, Paris

In collaboration with

V. Mazel, P. Richardin, Ph. Walter Centre of Research and Restoration of French Museums, Paris, France

V. Mazel et al., Analytical Chemistry, (2007) 79, 9253

V. Mazel et al., Studies in Conservation, (2008) 9, 347

Analysis of polished cross-sections of African patina Combination of μ FTIR, μ XRF and μ XANES

➡ Compatibility with successive libations

V. Mazel et al., *Analytical Chemistry*, (2007) **79**, 9253 V. Mazel et al., *Studies in Conservation*, (2008) **9**, 347

Protrusions in oil paintings

In collaboration with

E. Checroun Institut National du Patrimoine, Paris

M. Cotte et al, Talanta (2006), 70, 1136

M. Cotte et al, Applied Physics A, (2007) 89 (4), 841-848

Analysis of thin cross-sections of original and model protrusions Combination of μ FTIR, μ XRF and μ XANES

Anonymous portrait, 1610, Châtillonsur-Seine

Main degradation signs: protrusions

· HAR. MOUZELER. ISI

Thin sections obtained by polishing KBr pellet:

http://www.amolf.nl/publications/theses/weerd/

Modern fac-simile, 1 month old

Fragment covered with an AI foil and cut with a microtome

Cotte et al., Applied Physics A, (2007) 89 (4), 841-848

tion 1150 3750 3750 3650 3650 3650 4650 4650 4150

European Synchrotron Radiation Facility

Cotte et al., Applied Physics A, (2007) 89 (4), 841-848

Analysis of thin cross-sections of model protrusions Combination of μ FTIR, μ XRF and μ XANES

European Synchrotron Radiation Facility

Cotte et al., Applied Physics A, (2007) 89 (4), 841-848

Analysis of thin cross-sections of model protrusions Combination of μ FTIR, μ XRF and μ XANES

Adequate preparation to carry out XANES at lead M-edges

Cotte et al., Applied Physics A, (2007) 89 (4), 841-848

Meilunas	Studies in Conservation	1990	Pb
Plater	Polyhedron	2002	Pb
Boon	ICOM proceeding	2002	Pb
Noble	Art Matters	2002	Pb
Van der Weerd	Zeitschrift for Kunsttechnologie und Konservierung	2002	Pb
Higgit	The National Gallery Technical Bulletin	2003	Pb
Van der Weerd	Zeitschrift for Kunsttechnologie und Konservierung	2004	Zn
Keun	Analytical chemistry	2004	Pb
Boon	Microscopy and microanalysis	2005	Pb
Cotte	Applied physics A	2007	Pb
Mazzeo	Analytical and Bioanalytical Chemistry	2008	Cu, Pb, Mn, Zn, Cd
Salvado	Talanta	2009	Ca, Cu, Pb

Not an exhaustive list

Meilunas	Studies in Conservation	1990	Pb	degradation
Plater	Polyhedron	2002	Pb	degradation
Boon	ICOM proceeding	2002	Pb	degradation
Noble	Art Matters	2002	Pb	degradation
Van der Weerd	Zeitschrift for Kunsttechnologie und Konservierung	2002	Pb	degradation
Higgit	The National Gallery Technical Bulletin	2003	Pb	degradation
Van der Weerd	Zeitschrift for Kunsttechnologie und Konservierung	2004	Zn	degradation
Keun	Analytical chemistry	2004	Pb	reaction over centuries
Boon	Microscopy and microanalysis	2005	Pb	degradation
Cotte	Applied physics A	2007	Pb	synthesis
Mazzeo	Analytical and Bioanalytical Chemistry	2008	Cu, Pb, Mn, Zn, Cd	degradation
Salvado	Talanta	2009	Ca, Cu, Pb	Reaction compounds

When does the controlled synthesis stop and the degradation start?

Are they willingly synthesized ?

or

Are they due to long term interactions ?

<u>Question 2:</u>

Can we determine their age?

Looking for information in ancient recipes

Sir Theodore Turquet de Mayerne (1573-1655)

4 walnut oil + 1 PbO

J'ay pris quattre onces d'huile de noix fort bonnes non puantes et ay jetté dedans une once de Litharge d'or ben lavée, puis les ay nourri ensemble dans un poeslon sur un petit feu que la litharge s'est entièrement dissoulte et incorporée avec l'huile. Alors j'y ai jetté quatre ou cinq ceiullerées d'eau aquelle estant froide faict un fort grand bruit et y doibt estre mise chaude. Alors le feu a été augmenté et la matière a bouilli remuant tousjours jusques à tant que par la consomption de l'eau le tout se soit expaissi en Ebullition en consistance de beurre en Esté, un peu plus espais que du miel, comme un unguent liquide. Ceste mixtion n'est pas puante. Et peult servir de vernix au fer pour empescher la rouille. Au bois sur des couleurs obscures comme sur noir ou terre d'ombre et est bonne pour du cuir, taftas, toile, et choses semblables.

Pour imprimer tableaux. Broyés de l'ocre jaulne avec cet unguent ou huyle. L'ocre ayant esté au préalable broyée avec eau, et bien séchée, et couchés cette mixtion sur vostre toile bien tendue sur le châssis sans aucune colle ou autre chose, qui puisse faire rompre ou escailler la toile. Laissés seicher puis polissés avec une pierre ponce, et donnés une seconde couche avec vostre huile et ocre l'estendant avec le cousteau selon l'art et ainsi vostre toile estant seichée sera imprimée suffisamment. »

European Synchrotron Radiation Facility

M. Cotte et al., *Talanta*, (2006), **70**, 1136

<u>Answer 1a:</u>

Lead soaps can be synthesized in only ~2 hours by mixing oil, water and lead oxide.

<u>Answer 1b:</u>

The synthesis of lead soaps provides a better control of the consistency of the product (paste).

The addition of water enables the control of curing temperature, hence the colour of the product.

Answer 2:

It is difficult to determine the age of lead soaps as we cannot determine precisely the conditions of preparation (reacting compounds? Water? Temperature?).

"Chemical reactions" does not systematically means alteration

Bamiyan Buddhist mural paintings

In collaboration with Y. Taniguchi National Research Institute for Cultural Properties Tokyo-Japan E. Checroun

Institut National du Patrimoine, Paris

- Historical knowledge/techniques?
- Degradation phenomena?

M. Cotte et al, J Anal Atom Spectrom 2008, 23, 820

European Synchrotron Radiation Facility

Buddhist paintings

Bamiyan

Afghanistan

5th-9th Century

The context: Bamiyan Buddhist mural paintings

Samples were taken under the Ministry of Information and Culture of Afghanistan in a framework of Conservation Project of the Bamiyan Site. Credit/ (National Research Institute for Cultural Properties, Tokyo-Japan/UNESCO. Special thanks to Yoko Taniguchi and Emilile Checroun.

2 different set-ups for FTIR and X-rays

μ-FTIR ID21

<mark>μ-XRF</mark> / μ-XRD ID18F

SR-based micro-FTIR analysis

This sample is indeed altered, on the surface

ESRE

Identification of some copper alteration compounds on the surface of the painting

SR-based micro-FTIR analysis

Combination of μ XRF/ μ XRD with μ FTIR mapping

Cu	CI	Pb	Fe	K
max μ min	moolooite	atacamite	palmierite	anglesite
hydrocer.	cerussite	minium	goethite	quartz

Map: 150×60µm² Step: 1×30µm² Beam: 1×15µm²

µXRF/µXRD μ FTIR = Microbiological organic binders + = pigments influence some pigments copper oxalates (moolooite) Alteration products copper/lead carboxylates Paint lead white (hydrocerussite/cerussite) layers minium goethite Ground lead white (hydrocerussite/cerussite) layer Sizing protein + polysaccharides layers Earthen quartz, clays... natural resin render

 ✓ Interest of mapping towards punctual analysis: better identification in addition to localization

 ✓ Interest of combining different microanalytical techniques: complementary information

Summary on sample preparation: adapted preparation vs. versatile preparation

FTIR:

- Transmission is suitable
- Embedding resin can be a problem
- Appropriate thickness is ~ 2-5µm

XRD:

- Transmission is suitable
- Embedding resin is not a problem
- Appropriate thickness is ~ 30µm

XRF/XANES:

- Thin sections are useful when contribution from in-depth materials must be avoided
- Transmission is better, when element of interest is sufficiently concentrated
- Embedding resin is not a problem

Polished sections are easier to prepare and to handle

Transmission on thin sections offers higher spectral quality

Diamond windows used to press samples are compatible for X-ray analysis performed in "reflection mode" Micro-FTIR is a highly potential method to identify and to localize both organic and mineral compounds.

Combination with other analytical techniques is essential

- Micro X-ray fluorescence: elemental identification (up to traces)
- Micro X-ray spectroscopy: focus on a specific element, even in a complex mixture, even in an amorphous state
- Micro X-ray diffraction: better identification of mineral phases

Experimental configurations Unique or adapted sample preparation

Thank you for your attention

cotte@esrf.fr

To apply for a proposal on X-ray AND/OR on FTIR microscopes!

dead lines 1st of March,1st of September, http://www.esrf.fr