

"Superconductivity and other new Developments in Gantry Design for Particle Therapy"

Paul Scherrer Institute Park Hotel Bad Zurzach, Switzerland 17-19 September 2015

Cooling methods and cryogenic systems for rotating superconducting magnets

Bertrand Baudouy CEA-Saclay

bertrand.baudouy@cea.fr

Outline

- Some considerations for the cryogenic design
- An example :the CEA-Saclay Gantry cryogenic pre-design
- Thermal links for cryocooling
- Conductive thermal links for cryocooling
- Two-phase cryogen thermals link for cryocooling

Considerations for cryogenic design (1/3)

- Magnet submitted to rotation
 - No fluid in the SC coil (dry coil)
 - Gravity assisted cooling system prohibited
 - No cryogenic fluid : Cryogen-free design
 - With cryogenic fluid : Gravity "independent" cooling system design
- System used by non cryogenists
 - Best cold sources are cryocoolers
 - Cooling of the main magnets
 - Cooling of the auxiliary components (radiation shields and current leads)
 - Passive thermal links between the cryocooler and the cold parts
 - Conductive (cryogen free)
 - Gravity independent two-phase cryogen thermal link
- Medical or commercial environment
 - Importance of the cool-down duration
 - Importance of the recovery duration after a quench

Considerations for cryogenic design (2/3)

- Cooling with cryocoolers
 - Thermal link between the cold source and the system
 - Indirect cooling ($\Sigma\Delta T$ due to thermal contact resistance, ...)
- Advantages
 - Easy implementation (no liquefaction unit, no heat exchanger, no transfer line, ...)
 - Easy working conditions
- Disadvantages
 - Limited cooling power thermal design must be accurate if the heat load to be extracted exceeds the cryocooler power capacity, then T
 - A point-source of cold (35 cm² to 85 cm²)

A distribution of cooling power must be implemented

Considerations for cryogenic design (3/3)

- GM Cryocooler characteristics
 - 4K two-stage cryocooler
 - 2nd stage 1.5 W at 4.2 K
 - 1st stage 30 W at 50 K
 - Cold source area ~35 cm²
 - 20K two-stage cryocooler
 - 2nd stage 10 W at 20 K
 - 1st stage 35 W at 77 K
 - 77 K single stage cryocooler; several 100 W!
 - Cold source area ~ 85 cm²
- Maintenance (20000 hours)

4K class cryocooler © SHI Cryogenics Group

300W @ 80 K cryocooler © CryoMech

CEA-Saclay Gantry cryogenic pre-design (1/4)

- Carbon ion hadron therapy Gantry magnet studied at CEA Saclay in 2000's
 - Dipole composed of 12 coils, 90° with 2 m curvature radius
 - Active shielding
 - NbTi SC with a 1.25 K temperature margin (T=4.2 K)
 - Central field of 3.2 T, 5.4 T max on the conductor, 12 MJ of stored energy

- Cryocoolers used for the cooling and the normal working condition
 - Possibility to cool-down with cryogen

CEA-Saclay Gantry cryogenic pre-design (2/4)

- Heat load inventory in normal working conditions
 - Heat conduction due to the different supports : 3 W
 - Radiation
 - 21 W @ 80 K
 - 3.5 W @ 4.2 K
 - HTc Current leads (1000 A)
 - 1.3 W between 300 K and 50 K
 - + 0.3 W between 50 K and 4.2 K
 - Losses in the conductors : 3 W
 - Total :10 W @ 4.2 K : 20 W @ 80 K

- 8 x 1.5 W @ 4.2 K cryocoolers are necessary
 - Safety margin and 10% of performance degradation due to rotation

CEA-Saclay Gantry cryogenic pre-design (3/4)

- Minimization of the cooling time and the recovery time after quench
 - 3 x 580 W @ 80 K cryocoolers
 - 1 100 W @ 30 K cryocooler
- Enthalpy variation computation only
- Cooling time (300 K to 4.2 K)
 - 4.83 days from 300 K to 80 K
 - 2.7 days from 80 K to 30 K
 - 4.3 days from 30 K to 4 K
 - Total 12 days
- Recovery time after a quench
 - Average temperature reached 70 K
 - 16 hours to go back to 30 K
 - 23 hours to go down to 4 K
 - Total of 40 hours to recover

CEA-Saclay Gantry cryogenic pre-design (4/4)

Overall layout

No thermal link have been implemented in this pre-design !

Thermal links for cryocooling

- Whatever the "nature" of the thermal link
 - 2 contact thermal resistances, R_c [K/W]
 - Thermal resistance of the thermal link, L/\overline{k} .A
- The thermal resistance of the link itself is easy to designed whether it is conductive or nor
- The contact thermal resistances are not !
 - depend on surface condition, nature of the materials, temperature, interstitial materials, compression force...
 - increase by several orders of magnitude from 200 to 20 K

• In Steady-state
$$Q = \frac{T_h - T_c}{\sum_i R_i} = \frac{T_h - T_c}{R_{cc} + (L/\overline{k}.A) + R_{ch}}$$

• In transient ...

BB. Gantry Workshop

Thermal links for cryocooling | Conductive design

• The thermal contact resistance are most of the time the highest thermal resistance !

Cryocomp. Eckels Engineering. 3.06. Cryodata Inc. Florence SC, USA 29501

Two phase thermal links for Gantry SC magnets

- Gravity "independent" thermal link with cryogenic fluid
 - Higher heat transfer
 - Higher thermal time constant
- Passive cooling method for medical environment
- Two-phase thermal links

EUCARD

Fluid	He⁴	H ₂	Ne	N ₂	O ₂
Boiling temperature @ 1 atm (K)	4,2	20,4	27,1	77,3	90,2
Latent heat of vaporization (kJ/kg)	21	452	86	199	213
Sensible heat from 300 K and T_{boiling} (kJ/kg)	1550	3800	280	233	193
Power to evaporate 1 liter	0,7	9,0	29,0	45	68
Approximate price €/liter	7			0,15	
$Nb_{3}Sn MgB_{2} YBa_{2}Cu_{3}O_{7} \downarrow$ Nb, NbTi					
	80	100 120	140	helium Neon Hydrogen 160 Nitrogen	
Temperature (K)					

Two phase thermal links for Gantry SC magnets

- Several possible heat pipe could serve as thermal for Gantry SC magnet
- Wick-based heat pipe
 - Flow is created by capillary pressure in porous media at the liquid/vapor interface
 - Large ΔT between condenser and evaporator

(Evaporator) (System to be cooled) Heating

Two phase thermal links for Gantry SC magnets

- Cryogenic loop heat pipe
 - Heat pipe in a loop configuration (mass flow)

- Heat transfer in Nitrogen
 - Δ T=6 K for 40 W for 0.5 m long
 - $-R_{th} \ge$ for the heat load

Cez

BB. Gantry Workshop

Y. Zhao, et al. Experimental study on a cryogenic loop heat pipe with high heat capacity, Int J Heat Mass Transfer, 54 (2011), pp. 3304–3308

Two phase thermal links | Pulsating Heat Pipe

- A PHP consists of a plain meandering capillary tube with many U-turns, partially filled with a working fluid
 - There is no additional structure inside the tube
 - The tube is arranged between an evaporator and a condenser sections with an adiabatic section between
- The closed loop type is the simplest in operation and lightness of the cooling system the tube is joined end-to-end
- Oscillations of liquid slugs and vapor bubbles
 - Capillary forces create a separation of liquid slugs and vapor plugs
 - Pressure change due to expansion and contraction at phase transition
- High heat transfer
 - combination of phase change and advection

Two phase thermal links | Cryogenic PHP

- Chandratilleke et al.
 - Rond PHP, Ø 0.5 mm SS tubes, 10 turns
 - Condenser and evaporator section : 100 mm and 30 mm
 - Adiabatic section: 516 mm long

Fluid	Diameter	Heat input	Cooling part	Heating part	Keff
	(mm)	(W)	temperature (K)	temperature (K)	(kW/m.K)
He	0.5	0.2	4.2	4.6	12.9

- Gully et al.
 - Flat PHP, Ø 0.5 mm Cu-Ni tubes, 5 turns for helium
 - Condenser and evaporator section : 45 mm
 - Adiabatic section: 92 mm long

Fluid	Diameter	Heat input	Cooling part	Heating part	Keff
	(mm)	(mW)	temperature (K)	temperature (K)	(kW/m.K)
He	0.5	15-145	4.2	4.6	18.7

R. Chandratilleke, H. Hatakeyama, and H. Nakagome. Development of cryogenic loop heat pipes. Cryogenics, 38(3):263 { 269, 1998

F. Bonnet, Ph. Gully, and V. Nikolayev. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system. AIP Conference Proceedings, 1434, 2012.

Two phase thermal links | Cryogenic PHP

- Natsume et al.
 - Flat PHP, Ø 0.78 mm SS tubes, 10 turns
 - Condenser and evaporator section : 30 mm long
 - Adiabatic section: 100 mm long

Fluid	Heat input (W)	Cooling part temperature (K)	Heating part temperature (K)	Keff (kW/m.K)
H2	0-1.2	17-18	19-27	0.5-3.5
Ne	0-1.5	26-27	28-34	1-8
N2	0-7	67-69	67-91	5-18

- Fonseca et al.
 - Rond Flat PHP, Ø 0.5 mm SS tubes, 32 turns
 - Condenser and evaporator section : 75 and 133 mm long
 - Adiabatic section: 90 mm long

Fluid	Heat input	Cooling part	Heating part	Keff
	(mW)	temperature (K)	temperature (K)	(kW/m.K)
He	3-86	4.2	?	1.8-2.45

K. Natsume, Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets, Cryogenics, Volume 51, Issue 6, June 2011, Pages 309-314

Luis Diego Fonseca, Franklin Miller, John Pfotenhauer. A Helium Based Pulsating Heat Pipe for Superconducting Magnets. AIP Conference Proceedings 1573, 2014, 28.

Two phase thermal links | Comparison

- PHP much lighter than any of the solid thermal link
 - Gain of time in the cold-down process
- Equivalent or better performances than solid thermal links
 - Further studies are necessary to improve (or not) the SS performances of PHP
 - Study of the time constant to cool-down
- Simple implementation as the solid thermal link

PHP development at CEA Saclay

- In the frame work of the study of a magnetic shield to protect astronauts during space travelling (FP7-Space SR2S project)
- 77 K thermal shield because PHP are much lighter than any of the solid link
- Study of the numbers of tubing (12, 24, 36) filling ratio, temperature and pressure, length of the adiabatic section...
- Longest PHP ever...

BB. Gantry Workshop

