Future Circular Collider Study

M. Benedikt, F. Zimmermann gratefully acknowledging input from FCC global design study team

Outline

- Motivation
- FCC Hadron Collider
 - Parameters & challenges
- FCC Lepton Collider
 - Parameters & challenges
- Status of FCC collaboration

1983 first LHC proposal, launch of design study 1994 CERN Council: LHC approval 2010 first collisions at 3.5 TeV beam energy 2015 collisions at ~design energy (plan)

now is the time to plan for 2040!

Hadron collider motivation: pushing the energy frontier

- A very large circular hadron collider seems the only approach to reach 100 TeV c.m. collision energy in coming decades
- Access to new particles (direct production) in the few TeV to 30 TeV mass range, far beyond LHC reach.
- Much-increased rates for phenomena in the sub-TeV mass range →increased precision w.r.t. LHC and possibly ILC
 M. Mangano

The name of the game of a hadron collider is energy reach

$$E \propto B_{dipole} \times \rho_{bending}$$

Cf. LHC: factor ~4 in radius, factor ~2 in field \rightarrow O(10) in E_{cms}

Strategic Motivation

• European Strategy for Particle Physics 2013:

"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electron-positron high-energy frontier machines....."

• ICFA statement 2014:

".... ICFA supports studies of energy frontier circular colliders and encourages global coordination....."

• US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km infrastructure in Geneva area
- e+e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

FCC Scope: Accelerator and Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step FCC-he: integration aspects of pe collisions

R&D Programs

Push key technologies
in dedicated R&D programmes e.g.
16 Tesla magnets for 100 TeV pp in 100 km
SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to CERN accelerator complex **Site-specific**, requested by European strategy

Scope: Physics & Experiments

Physics Cases

- Elaborate and document
- Physics opportunities
- Discovery potentials

Experiment concepts for hh, ee and he Machine Detector Interface studies Concepts for worldwide data services

Overall cost model Cost scenarios for collider options Including infrastructure and injectors Implementation and governance models

CepC/SppC study (CAS-IHEP) 54 km (baseline) e⁺e⁻ collisions ~2028; *pp* collisions ~2042

50 km

526

Image 2013 DigitalGlobe Data SLO, LOAA, U.S. Navy, NGA, GEBCO

高能所

6102

Qinhuangdao (秦皇岛)

\$363

抚宁县。

CepC, SppC

easy access 300 km east from Beijing 3 h by car 1 h by train

Google earth Yifang Wang

100 km

CERN

山海关区

Previous studies in Italy (ELOISATRON 300km), USA (SSC 87km, VLHC 233km), Japan (TRISTAN-II 94km)

CERN Circular Colliders and FCC

CDR by end 2018 for strategy upade

FCC-hh preliminary layout

100 km layout for FCC-hh (different sizes under investigation)

- ⇒ Two high-luminosity experiments (A and G)
- ⇒ Two other experiments (F and H) grouped with main experiment in G
- \Rightarrow Two collimation lines
- ⇒ Two injection and two extraction lines

Orthogonal functions for each insertion section

Site investigations

Alignment Shaft Tools	Alignment Location	Geolo	ogy Ini	lersec	ted by	Shaf	ts Sh	aft Depti	1S	
Choose alignment option	+		s	haft D	epth (m)		Geolo	gy (m)	
93km quasi-circular 💌		Point	Actual	Min	Mean	Max	Quaternary	Molasse	Urgonian	Calcaire
Junnel depth at centre: 299mASL	C C	A	203			212				
		в	227							
iradient Parameters		C	218							
Azimuth (*): -15		D	153		154					
Slope Angle x-x(%): .5		Е	247							
Slope Angle v-v(%): 0		F	262			304				
		G	396	392						
CALCULATE		н	266			322				
lignment centre		1	146							
: 2499812 Y: 1106889		J	248	247						
Intersection CP 1 CP 2		К	163			164				
Angle	H G	L	182	182	184	187	17	165	0	
Depth 589m 589m		Total	2711	2607	2724	2867	585	2185	0	0

Alignment Profile

• 90 – 100 km fits geological situation well,

• LHC suitable as potential injector

Key Technology R&D - HFM

- Increase critical current density
- Obtain high quantities at required quality
- Material Processing
- Reduce cost

- Develop 16T short models
- Field quality and aperture
- Optimum coil geometry
- Manufacturing aspects
- Cost optimisation

Superconductor performance

FCC magnet technology program

Main Milestones of the FCC Magnets Technologies												
Milestone	Description	15	2016	20	17	201	8	201	.9	202	0	21
MO	High J _c wire development with industry											
M1	Supporting wound conductor test program											
M2	Design & manufacture 16T ERMC with existing wire											
M3	Design & manufacture 16 T RMM with existing wire											
M4	Procurement of 35 km enhanced wire											
M5	Design & manufacture 16T demonstrator magnet											
M6	Procurement 70 km of enhanced high J_c wire											
M7	EuroCirCol design 16T accelerator quality model											
	Manufacture and test of the 16 T EuroCirCol model											
								(

ERMC (16 T mid-plane field)

ee he

Unprecedented beam power

- 8GJ stored energy / beam
 - Airbus A380 at 700km/h
 - 24 times larger than in LHC at 14TeV
 - Can melt 12t of copper
 - Or drill a 300m long hole
 - \Rightarrow Machine protection
 - \Rightarrow Beam dumping
- Any beam loss important
 - E.g. beam-gas scattering, non-linear dynamics
 - Can quench arc magnets
 - Background for the experiments
 - Activation of the machine
 - ⇒ Collimation system
 - \Rightarrow Transfer and injection

Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance Termperature ranges: <20, 40K-60K, 100K-120K

Synchrotron radiation/beam screen

High synchrotron radiation load (SR) of protons @ 50 TeV:

- ~30 W/m/beam (@16 T)
- → 5 MW total in arcs (LHC <0.2W/m)</p>

New type of ante-chamber

absorption of synchrotron radiation avoids photo-electrons, helps vacuum

- Two parameter sets for two operation phases:
 - Phase 1 (baseline): 5 x 10³⁴ cm⁻²s⁻¹ (peak),
 250 fb⁻¹/year (averaged)
 2500 fb⁻¹ within 10 years (~HL LHC total luminosity)
 - Phase 2 (ultimate): ~2.5 x 10³⁵ cm⁻²s⁻¹ (peak), 1000 fb⁻¹/year (averaged)
 → 15,000 fb⁻¹ within 15 years
 - Yielding total luminosity O(20,000) fb⁻¹ over ~25 years of operation

LUMINOSITY GOALS FOR A 100-TEV PP COLLIDER

Ian Hinchliffe^a, Ashutosh Kotwal^b, Michelangelo L. Mangano^c, Chris Quigg^d, Lian-Tao Wang^e

^a Phyiscs Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

^b Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA Duke University, Durham, North Carolina 27708, USA

^c PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

 ^d Theoretical Physics Department, Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 USA
 Institut de Physique Théorique Philippe Meyer, École Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05, France

^e Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA

April 24, 2015

Abstract

We consider diverse examples of science goals that provide a framework to assess luminosity goals for a future 100-TeV proton-proton collider.

20 ab⁻¹ OK for physics

Luminosity evolution

phase 1: $\beta^*=1.1 \text{ m}$, $\Delta Q_{tot}=0.01$, $t_{ta}=5 \text{ h}$ phase 2: $\beta^*=0.3 \text{ m}$, $\Delta Q_{tot}=0.03$, $t_{ta}=4 \text{ h}$

phase 1: β^* =1.1 m, ΔQ_{tot} =0.01, t_{ta} =5 h

phase 2: β*=0.3 m, ΔQ_{tot}=0.03, t_{ta}=4 h

High-Energy LHC

FCC study continues effort on high-field collider in LHC tunnel 2010 EuCARD Workshop Malta; Yellow Report CERN-2011-1

EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider - HE-LHC10, E. Todesco and F. Zimmermann (eds.), EuCARD-CON-2011-001; arXiv:1111.7188; CERN-2011-003 (2011)

- based on 16-T dipoles developed for FCC-hh
- extrapolation of other parts from the present (HL-)LHC and from FCC developments

LEP – highest energy e⁺e⁻ collider so far

circumference 27 km in operation from 1989 to 2000 maximum c.m. energy 209 GeV maximum synchrotron radiation power 23 MV

Lepton collider physics areas

- highest possible luminosities at all working points
- □ beam energy range from 35 GeV to ≈200 GeV
- physics programs / energies:
 - Z (45.5 GeV) Z pole, 'TeraZ' and high precision $M_Z \& \Gamma_Z$
 - W (80 GeV) W pair production threshold, high precision M_w
 - H (120 GeV) ZH production (maximum rate of H's)
 - t (175 GeV): tt threshold, H studies
- some polarization up to ≥80 GeV for beam energy calibration
 machine optimized for operation at 120 GeV?! (2nd priority "*Tera-Z*")

Lepton collider key parameters

parameter		FCC-ee	CEPC	LEP2		
energy/beam [GeV]	45	120	175	120	105	
bunches/beam	13000- 60000	500- 1400	51-98	50	4	
beam current [mA]	1450	30	6.6	16.6	3	
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	21 - 280	5 - 11	1.5 - 2.6	2.0	0.0012	
energy loss/turn [GeV]	0.03	1.67	7.55	3.1	3.34	
synchrotron power [MW]		100		103	22	
RF voltage [GV]	0.2-2.5	3.6-5.5	11	6.9	3.5	

FCC-ee: 2 separate rings

CEPC baseline: single beam pipe like LEP

Dependency FCC-ee: crab-waist vs. baseline optics and 2 vs. 4 IPs

e⁺e⁻ luminosity vs. c.m. energy

FCC-ee SC RF system

RF system requirements are characterized by two regimes:

- o high gradients for H and $t\bar{t}$ up to ≈11 GV
- o high beam loading with currents of ≈1.5 A at the Z pole

Main RF frequency of 400 MHz (as for FCC-hh and LHC)

conversion efficiency (wall plug to RF power) is important for power consumption - aiming for 75% or higher \rightarrow R&D !

- \circ important item for FCC-ee power budget, \approx 65% achieved for LEP2
- recent breakthrough in klystron efficiency (I. Syratchev)

FCC-ee preliminary layout

Based on, and compatible with, FCC-hh layout (in green)

SuperKEKB as demonstrator

beam commissioning will start in 2015

K. Oide et al.

top up injection at high current β_y* =300 μm (FCC-ee: 1 mm) lifetime 5 min (FCC-ee: ≥20 min) ε_y/ε_x =0.25% (similar to FCC-ee) off momentum acceptance (±1.5%, similar to FCC-ee) e⁺ production rate (2.5x10¹²/s, FCC-ee: <1.5x10¹²/s (*Z* crab

SuperKEKB goes beyond FCC-ee, testing

FCC International Collaboration

61 institutes23 countries + EC

Status: 14 September 2015

FCC Collaboration Status

61 collaboration members & CERN as host institute, September 2015

ALBA/CELLS, Spain Ankara U., Turkey U Belgrade, Serbia **U** Bern, Switzerland **BINP**, Russia CASE (SUNY/BNL), USA **CBPF**, Brazil **CEA Grenoble. France CEA Saclay, France CIEMAT, Spain CNRS**, France **Cockcroft Institute, UK** U Colima, Mexico **CSIC/IFIC**, Spain **TU Darmstadt, Germany TU Delft, Netherlands DESY**, Germany **TU Dresden, Germany** Duke U, USA **EPFL**, Switzerland **GWNU**. Korea

U Geneva, Switzerland **Goethe U Frankfurt, Germany GSI**, Germany Hellenic Open U, Greece **HEPHY**, Austria **U** Houston, USA **IIT Kanpur, India IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk. Belarus** U Iowa, USA **IPM**, Iran UC Irvine, USA Istanbul Aydin U., Turkey **JAI/Oxford, UK JINR Dubna**, Russia FZ Jülich, Germany KAIST, Korea **KEK**, Japan **KIAS**, Korea

King's College London, UK **KIT Karlsruhe, Germany** Korea U Sejong, Korea **MEPhl**, Russia MIT, USA **NBI**, Denmark Northern Illinois U., USA **NC PHEP Minsk, Belarus** U. Liverpool, UK U Oxford, UK **PSI**, Switzerland **U. Rostock, Germany** Sapienza/Roma, Italy UC Santa Barbara, USA **U** Silesia, Poland **TU Tampere, Finland TOBB**, Turkey **U** Twente, Netherlands **TU Vienna, Austria** Wroclaw UT, Poland

EuroCirCol EU Horizon 2020 Grant

EC contributes with funding to FCC-hh study

Core aspects of hadron collider design: arc & IR optics design, 16 T magnet program, cryogenic beam vacuum system Recognition of FCC Study by European Commission.

EuroCirCol Consortium + Associates

CERN	IEIO
TUT	Finland
CEA	France
CNRS	France
KIT	Germany
TUD	Germany
INFN	Italy
UT	Netherlands
ALBA	Spain
CIEMAT	Spain
STFC	United Kingdom
UNILIV	United Kingdom
UOXF	United Kingdom
KEK	Japan
EPFL	Switzerland
UNIGE	Switzerland
NHFML-FSU	USA
BNL	USA
FNAL	USA
LBNL	USA

Consortium Beneficiaries, signing the Grant Agreement

- High energy circular colliders are a powerful option for future accelerator-based HEP!
- We now need to urgently prepare for post-LHC period, and there are strongly rising activities worldwide.
- The design of high energy circular colliders presents many challenging R&D requirements in SC magnets, beam handling, SRF and several other technical areas.
- Global collaboration in physics, experiments and accelerators and the use of all synergies is essential to move forward.

FCC Week 2016

Istituto Nazionale di Fisica Nucleare Sezione di Roma

