

Live Neutron Data Analysis LiNDA

Sine2020 PSI meeting April 4th and 5th 2016

www.europeanspallationsource.se 5th april 2016

Static data analysis

UROPEAN SPALLATION

- Data analysis often performed after the experimental run
- Could it be possible to do a full data analysis during an experimental run ?
- Test case for Live Neutron Data Analysis: SANS

SANS data analysis

EUROPEAN SPALLATION SOURCE

• Can this be done Live ?

Page1						
						Show 1D Help [Units] [1/cm]
q) Data Source						
Name :					T	
Category						
Shapes		Mod	lify			Show 1D
Shapes				Descrip	tion	Help
CylinderModel	v P	(Q)*S(Q)	None		T	
lodel Parameters	Value		Free	Min	Max	[] inite]
Select All	value	+/-	EITOI	MIN	Max	[Units]
Jackground	0	·//			1.46	
lengtn	400		[0	inf	
radius	40		[0	Inf	
	1	+/-				[1/44(2)]
Scale	4- 00	+/-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
✓ scale ✓ sldCyl	4e-06	+/-	[[1/44(2)]
 ✓ scale ✓ sldCyl ✓ sldSolv 	4e-06 1e-06	+/-				[1/A^(2)]
 ✓ scale ✓ sldCyl ✓ sldSolv [For 2D only]: 	4e-06 1e-06	+/-				[1/A^(2)]
 ✓ scale ✓ sldCyl ✓ sldSolv [For 2D only]: Magnetic ON 	4e-06 1e-06	+/-				[1/A^(2)]
 ✓ scale ✓ sldCyl ✓ sldSolv [For 2D only]: Magnetic ON ✓ cyl_phi 	4e-06 1e-06 60	+/-				[1/A^(2)] [deg]

SasView scattering kernel: Orientated cylinder

Live Data workflow

EUROPEAN SPALLATION SOURCE

- x,y,z,t
- Experiment data
- Simulated data
- E.g. McStas

- qx, qy, qx, hw
- Reduction method
- E.g. Mantid

- Determine experimental parameters
- SasView
- Fullprof

"Live" SANS McStas data – Mantid reduction

McStas SANS scattering kernel: spheres

Curve fitting

- Obtaining a good fit depends foremost on having the correct model to fit.
- In general there is a trade-off between convergence rate and robustness, with the fastest algorithms most likely to find a local minimum rather than a global minimum.

Curve fitting - Interoperability

EUROPEAN

SPALLATION

SOURCE

Fit model - SANS – Spherical nanoparticles

$$\left. \frac{d\Sigma}{d\Omega} \right|_{\text{SANS, simple}} \equiv \phi \Delta \rho^2 V S(\mathbf{q}) P(\mathbf{q})$$

$$P_{\rm sphere}(q) = \left(3 \, \frac{\sin(qR) - qR\cos(qR)}{(qR)^3}\right)^2$$

Data workflow – Simulated reduced data

EUROPEAN SPALLATION SOURCE

Simulated reduced

data = SasView I(q)

data

Streamed – SANS data – radius = 120 Å

000		1. Python	M
# neutron number	11898 has q-value	0.0210603	
# neutron number	11899 has q-value	0.0160452	
# neutron number	11900 has q-value	0.00601508	
# neutron number	11901 has q-value	0.001	
<pre># neutron number</pre>	11902 has q-value	0.00601508	
<pre># neutron number</pre>	11903 has q-value	0.001	
<pre># neutron number</pre>	11904 has q-value	0.0110302	
<pre># neutron number</pre>	11905 has q-value	0.0110302	
<pre># neutron number</pre>	11906 has q-value	0.0260754	
<pre># neutron number</pre>	11907 has q-value	0.00350754	
<pre># neutron number</pre>	11908 has q-value	0.001	
<pre># neutron number</pre>	11909 has q-value	0.0210603	
<pre># neutron number</pre>	11910 has q-value	0.001	
<pre># neutron number</pre>	11911 has q-value	0.0135377	
<pre># neutron number</pre>	11912 has q-value	0.00350754	
<pre># neutron number</pre>	11913 has q-value	0.0110302	
<pre># neutron number</pre>	11914 has q-value	0.0135377	
<pre># neutron number</pre>	11915 has q-value	0.00601508	
<pre># neutron number</pre>	11916 has q-value	0.00601508	
# neutron number	11917 has q-value	0.00350754	
<pre># neutron number</pre>	11918 has q-value	0.00601508	
<pre># neutron number</pre>	11919 has q-value	0.001	
# neutron number	11920 has q-value	0.00852261	
<pre># neutron number</pre>	11921 has q-value	0.0160452	

- Each neutron event carries a q value
- Histogram data for intensity

Data are streamed

• Initial guess for radius = 120 Å

Fitted radius & 65% CI

- Data streamed
- Fitted model

Discussion items

EUROPEAN SPALLATION SOURCE

- Agree on a standard for fitting method ?
- How to benchmark different fitting methods ?
- Practical viewpoint Need a sustainable solution
 - List what is currently being used
 - How much manpower is available ?

• Initial guess for radius = 100 Å

Fitted radius & 95% CI

- Data streamed
- Fitted model