Contributing to Task 10.4: Atomistic Modelling for Muon Spectroscopy (UNIPR)

Theme: Making µSR accessible through improved data analysis

Current Status: Staff Appointed...

- 1st Nov.: Ph.D. student: Ifeanyi John Onuorah
 - Experience:
 - Master degree @ International Centre for Theoretical Physics
 - Thesis: Ab-initio Simulations of Sodium Superoxide
 - Work:
 - DFT & code development and deployment under the supervision of Prof. Roberto De Renzi (RDR).
 - RDR will charge 300 h over 3 year to the project.
 - RDR charged hrs. + IJO PhD project will fulfil Parma task.
- 16th Jen.: Postdoc Research Fellow: Pietro Bonfa
 - Fund provided from University of Parma
 - Working full time on DFT+ $\!\mu$

Objectives of the Task...

- Developing DFT methods as a predictive tool for muon sites, contact hyperfine fields and evaluating stability of candidate sites.
- Evaluating the reliability of DFT methods as a predictive tool through an investigation of model systems with reliable experimental data.
- Developing subroutines for site refinement through dipolar sums and contact hyperfine fields.
- Development of methods to visualise results.

Context of the Task...

- Developing interoperability by using Mantid as a platform for hosting ...
 - a Python subroutine library for site refinement
 - visualisation tools
- Bringing together μSR groups currently working on DFT /dipole methods by ...
 - sharing ideas and strategies
 - establishing standards for a subroutine library for sharing codes
 - A Workshop late 2016 is suggested (μ SR groups incl. Parma, Oxford and Durham)
- Potential for sharing DFT knowledge/skills/resources through (for example) ...
 - links with STFC Scientific Computing (PDRA working on muon problems)
 - use of CASTEP and HPC as appropriate