

Fibre Sub-detector Status Report

Angela Papa for the Fibre Group BV47 8th February 2016 Paul Scherrer Institut

Summary

The fibre detector

- Overview
- Impact on the experiment

Reminder from BV46

• Previous activities in one shot

Results with New detector prototypes

• with squared and round fibres coupled to standalone electronics

Readout electronics

• STiC and MuSTiC

Detector integration

• Mechanics, Cooling, Cabling...

Milestones/Next steps

The fibre detector

Overview

Parts

- cylindrical at ~ 6 cm (radius);
 length of 28-30 cm;
- 3-4 layers of round or square multi-clad 250 µm fibres
- fibres grouped onto SiPM array
- MuSTiC readout

Constraints

- high detection efficiency $\epsilon \ > 95\%$
- time resolution σ < 1 ns
- < 900 μ m total thickness
 - $< 0.4 \% X_0$
- rate up to 250 KHz/fibre
- very tight space for cables, electronics and cooling ³

Detector impact into the experiment:

Accidental Background suppression

Additional suppression factor due to timing detectors

- Dominant combination: e⁺/e⁻ pair with common vertex, coincidence (Bhabha)
 e⁺ (Michel)
- Hypothesis:

reconstructed tracks (grouped in \geq 4 hits and \geq 6 hits)

fully efficent tile detector with 60 ps resolution

95% fibre ribbon efficiency with 500 ps resolution

s_fact	fibres	tiles	both
≥4 hits	35	5.3	72
≥6 hits	44	5.3	102

s_fact = suppression factor

Detector impact into the experiment:

Accidental Background suppression

Additional suppression factor due to timing detectors

- Dominant combination: e⁺/e⁻ pair with common vertex, coincidence (Bhabha)
 e⁺ (Michel)
- Hypothesis:

reconstructed tracks (grouped in \geq 4 hits and \geq 6 hits)

fully efficent tile detector with 60 ps resolution

95% fibre ribbon efficiency with 500 ps resolution

s_fact	fibres	tiles	both
≥4 hits	35	5.3	72
≥6 hits	44	5.3	102

s_fact = suppression factor

Reminder from BV46

Prototype development in One Shot

Squared fibre prototype

- Hamamastu SI2825-050C (I.3 xI.3 mm²)
- 2 staggered layers
- $250 \times 250 \text{ um}^2$ Saint-Gobain BCF 12 fibre
- Fibre Length: 20 cm
- Individual fibre readout
- Double Readout
- Negligible fibre optical cross-talk < 1%

Results:

<u>ε(OR)> 97 %</u>

σ (double hit, thr > 0.5 phe) ~ 400 ps

Round fibre prototype

- Hamamastu SI 2573-050P (3 x3 mm²)
- **3** staggered layers
- 250 um diam Kuraray SCSF-81M fibre
- Fibre Length: 20 cm
- Bundle readout
- Double Readout

Results:

<u>ε(OR) > 95 %</u>

<u> σ (bundle, thr > 2 phe</u>) ~ 400 ps

Results with new prototypes

Squared fibres

The Large Prototype

- a segmented and versatile detector
- each fiber independent element

Aim

- detector design and performance assessment
- emphasis: different layer combination study

What's new

- More channels: 64
- Longer and New fibres:

L~ 50 cm and new Saint Gobain multiclad BCF12 production

- Four fibre layers
- New SiPM series

Hamamatsu SI 3360-1350CS

Fibre assembly (lateral view)

cement

- Squared 250 \times 250 um² fibres
- 100 nm AI coating (Evaporation)
- Double readout.

Prototype production chain Squared fibres

SiPM alignment

SiPM/ Preamp characterization

Measurement

Prototype performance overview Squared fibres

- Measurements using
 - ⁹⁰Sr-source (m.i.p. selection with an external thick plastic scintillator)
 - e⁺ beam (e.g. π M1/PSI with p = 115 MeV/c)
- All channels worked | Homogeous response | Detection efficiency consistent with the previuos prototype
- Several triggers (🔲 : trigger, 🔲 fired fibres)

• Offline different layer grouping configurations/trigger

trigger	
layer grouping	

Prototype performance: individual fibre readout Squared fibres

- Not foreseen during phase I
- Mandatory to explore in depth the prototype performances

Detection efficiency

ε (OR) ± 2 [%]	Q > 0.5 phe	Q > 1.5 phe
Single layer	97	79
Double layer	> 99	94
Triple layer	> 99	97

definition: ϵ (single or double layer) = (# Detected Events) / (# Telescope Events) definition: ϵ (triple layer) = (# Detected Events) / (# Triggered Events) note: for the different layer configurations always ORed fibres

OR:

with respect to both fbre ends of the same fibre

Legend:

Prototype performance: individual fibre readout Squared fibres

- Not foreseen during phase I
- Mandatory to explore in depth the prototype performances

Detection efficiency

ε (AND) ± 2 [%]	Q > 0.5 phe	Q > 1.5 phe
Single layer	71	34
Double layer	89	54
Triple layer	95	67

definition: ϵ (single or double layer) = (# Detected Events) / (# Telescope Events) definition: ϵ (triple layer) = (# Detected Events) / (# Triggered Events) note: for the different layer configurations always ORed fibres

AND:

with respect to both fibre ends of the same fibre

Legend:

Prototype performance: individual fibre readout Squared fibres

- No foreseen during phase I
- Mandatory to explore in depth the prototype performances

Detection efficiency

ε (AND) ± 2 [%]	Q > 0.5 phe	Q > 1.5 phe
Single layer	71	34
Double layer	89	54
Triple layer	95	67

Prototype performance: offline array readout Squared fibres

- Array readout: baseline solution
- Sum of charge of fired fibres/event (offline "array readout") then apply cuts

Detection efficiency

ε (AND) ± 2 [%]	Q _{array} > 0.5 phe	$Q_{array} > 1.5 \text{ phe}$
Single layer	71	34
Double layer	93	75
Triple layer	96	88

Performances

PerformancesThree layers Opt	imized ''array readou	ut'' Extrapola	tea
(ϵ [%] , σ [ps], S/N*)	$Q_{array} > 0.5 phe$	Q _{array} > 1.5 phe	-ų
Triple layer	(> 95, ~ 500, >10)	(> 85, ~ 400, > 50)	

(*) Stopped muon rate: $10^8 \mu/s$

Array readout schemes Squared fibres

- Working stage
- Fitting the available space

Array readout without fan-out

Array readout with fan-out

FibreArrayCellWidth

Array readout scheme with fan-out Squared fibres

- Working stage
- Fitting the available space

Array readout with fan-out

Fibre module

Results with new prototypes

Round fibres

Individual fibre readout

- 2 Prototypes, with/out TiO₂ coating
- Hamamastu SI257I-050P
- 4 layers
- 250 um diam Kuraray SCSF-81M fibre
- Fibre Length: 36 + 2x4 cm
- 32 equipped fibres with SiPM
- Double Readout

• A sample track

Overview and Detection efficiency

	Nphe/ch	ch/Event	σ [μm]	ε (OR)[%]
4 layers, no coating single SiPM	3	7	155	95
4 layers, TiO ₂ coating single SiPM	3.6	5.5	133	95

- 20% TiO₂ coating effect: reduced optical cross-talk
 - improved position resolution

Timing Resolution

- Photon counting via signal integral
- Timing is the centroid of the negative peak in the differentiated waveform
 - no time-walk

Array readout: first prototypes Round fibres

Array readout

- 2 Prototypes, without TiO₂ coating
- Hamamastu S10943-3183
 - 0.23 x 1.5 mm² channel area
 - 57.5 x 62.5 um^2 pixel area
 - 128 (64 x 2) channels
- 2 and 5 layers
- 250 um (diam.) Kuraray SCSF-81M fibre
- Fibre Length: 12 cm
- Fibres Readout on one side only

Readout electronics

Requirements: different fibre groupings/SiPM arrays - **baseline**

- **I536** (1536-9216) channels
- **1044** (350-1300) kHz/channel
- < 100 ps time information [charge beneficial, possibly 2nd threshold]
- very tight space constraints (48 ASICs)

STiC3.1	MuSTiC
in our hands (fibre group)	in development ready: end 2016
64 channels	32 channels
160 Mbit/s links	1250 Mbit/s links
~40 kevents/s	~1200 kevents/s
no charge for fibre signals	possibly 2nd threshold

Readout electronics: concept

STiC3.I:

Integration (working stage)

- 64 columns SiPM arrays (1.3 × 0.25)
 0.75 mm² cells)
- I readout board per ribbon/side
 - 2 (Mu) STiCs
 - interface to DAQ/slow control
 - HV and test pulse distribution

Round fibre prototype connected to STiC

Dimensions of available components taking into account

Detector integration

- Fibre structure attached on same support wheel as pixel layers ribbons (at 6 cm) displace in r-(3 mm) and z-(1 cm) direction
- 6 modules, 4 ribbons (width: 16 mm) per module SiPM arrays readout Lateral view 4 fibre ribbons support wheels-Front view Top view 1.0 cm 5.0 cm 5.0 cm 1.0 cm

Milestones/Next steps

SiPM Array design/selection	(Q2/16)
Full simulation and reconstruction of Fibre Detector	(Q3/16)
SiPM radiation hardness	(Q3/16)
Construction of a technical prototype for the fibre mechanics (attachment, cooling, services, possibly fibre fan-out)	(Q4/16)
Construction of a readout prototype including SiPM arrays, PCB, power distribution and slow control	(Q4/16)
Decision on fibre type (round or square) and SiPM	(Q1/17)
Manufacturing and quality management strategy for fibre ribbon/module production	(Q1/17)
MuSTiC integration	(Q2/17)
Fibre readout integration into experiment DAQ and slow control (Midas)	(Q2/17)
Fibre detector alignment and calibration scheme	(Q2/17)

Conclusions/Outlook 1/3

- The fibre detector crucial to suppress the accidental backgrounds
- The challenge: high detector efficiency (> 95%) and good timing resolution (< I ns)
 - minimal amount of material (< 0.4% X_0)
 - strong spatial constraints (electronics, cable, cooling etc.)

Conclusions/Outlook 2/3

- Several prototypes built with standalone electronics and DAQ
 - Squared Fibre Large Prototype performances:
 (ε[%] (triple layer), σ [ps] (single hit), σ [ps] (triple hit)) = (> 95, ~700, ~500)
 - Round fibre "single readout" Prototype performances: (ϵ [%] (fourth layer), σ [ps] (single hit)) = (> 90, ~1100)
- Extrapolating to the final detector: requirements well met

Conclusions/Outlook 3/3

- STiC 3.1 coupled to fibres: confirmed standalone DAQ measurements
- Detector integration into the experiment: all parts included into technical drawings
- Detailed milestones/next steps up to the middle of next year

Backup

Prototypes performance Squared fibres

• A sample track

The piM1 beam line conditions Squared/Round fibres

- p = 115 MeV/c
- FS12 fully open
- FSII partially open
- Beam size: $(\boldsymbol{\sigma}_{x}, \boldsymbol{\sigma}_{y}) = (6.6, 9.4)$ mm
- Total rate: 1.75 10⁶ p/s @ 2.2 mA
- 90% positrons, rest muons and pions

Pill counter: BC400 diam. 2 x length 2 mm² coupled with PMT

The Large prototype (squared fibres) in PiM1

More Pictures about the Large Prototype Squared fibres

The Round fibre prototypes at CERN

Test beam setup

VME DAQ: CAEN V775 TDC , CAEN V792 QDC, CFD – custom

Detection efficiency

Ribbon, No caoting	1			
OverVoltage [V]	Av. Np.e./ch	Pos σ (μ)	Efficiency	# Ch / event
0.5	2.4	148	0.78	4.8
1.0	2.7	125	0.85	4.9
1.5	2.9	133	0.90	5.8
2.0	3.0	155	0.95	7.0

Ribbon, 20% TiO2

OverVoltage [V]	Av. Np.e./ch	Pos σ (μ)	Efficiency	# Ch / event
0.5	2.7	148	0.73	4.3
1.0	3.0	133	0.85	4.5
1.5	3.3	135	0.90	4.9
2.0	3.6	133	0.95	5.5

A hit in the fiber is accepted if the sum of the photoelectrons detected is ≥ 3 ph.e.

Array, 5 layers, No coating

OverVoltage [V]	Av. Np.e./ch	Pos σ (μ)	Efficiency	# Ch / event
2.0	4.2	165	0.96	2.5
2.5	4.4	158	0.97	2.9
3.0	4.0	160	0.97	3.0
3.0	4.0	170	0.96	3.0

Array, 2 layers, No coating

OverVoltage [V]	Av. Np.e./ch	Pos σ (μ)	Eff	# Ch / event
57.5	2.8	167	0.82	2.8

Detector impact into the experiment:

Background suppression

Internal Conversion

no timing suppression

µ→eeevv

Accidental Background

- \bullet Two Michel's e^+ and one $e^{\scriptscriptstyle -}$, where $E_{tot} \sim m_\mu$ and $\sum p_i \sim 0$
- Dominant combination: e⁻ scattered off by e⁺ (e.g. Bhabha), where e⁺/e⁻ common vertex, coincidence

Additional suppression due to timing detectors

- fully efficent tile detector with 60 ps resolution
- 95% fibre ribbon efficiency with 500 ps resolution

	fibres	tiles	both
≥4 hits	35	5.3	72
≥6 hits	44	5.3	102

Multiple Scattering

• Round fibre n; Squared fibre n-I

Example of curves for SiPM Characterization

Hamamatsu photosensors

