

Timing Detectors Status Report

Simon Corrodi for the Mu3e Fibre group

6th February, 2017, BVR 48, PSI

The Timing Detectors: Motivation

Performance Studies: dedicated presentation

The Timing Detectors: Motivation

Situation

Fraction of reconstructed tracks (Michel decay, $\geq\!\!6\,\text{hits})$ with dominant timing from corresponding detector.

Impact: Background Suppression

Accidental: Bhabha pair + Michel

Impact: Charge Identification

Time resolution \leq 0.5 ns allows reliable charge identification for recurling (\geq 8 hits) tracks.

The Tile Detector: Overview

Components

- cylindrical at max \sim 6.3 cm; 36.4 cm long
- 56 x 56 tiles of 6.5 \times 6.5 \times 5.0 mm^3
- $3 \times 3 \text{ mm}^2$ single SiPM per tile
- mixed mode ASIC: MuTRiG

Requirements

- as efficient as possible; close to $100\,\%$
- time resolution better than 100 ps
- up to 50 kHz per tile/channel

The Tile Detector: Overview

Components

- cylindrical at max \sim 6.3 cm; 36.4 cm long
- 56 x 56 tiles of 6.5 \times 6.5 \times 5.0 mm^3
- $3 \times 3 \text{ mm}^2$ single SiPM per tile
- mixed mode ASIC: MuTRiG

Requirements

- as efficient as possible; close to $100\,\%$
- time resolution better than 100 ps
- up to 50 kHz per tile/channel

The Tile Detector: Prototype

Prototype

- 4×4 channel BC408
- $7.5\times8.5\times5.0\,\text{mm}^3$
- Hamamatsu S10362-33-050C $(3 \times 3 \text{ mm}^2)$
- readout with STiC2

requirements fulfilled

The Fibre Detector: Overview

Components

- cylindrical at \sim 6 cm; 28-30 cm long
- 3-4 layers of $250\,\mu m$ fibres in 12 ribbons
- SiPM column arrays
- mixed mode ASIC: MuTRiG

Requirements

- as thin as possible; $\leq 0.5\,\%~X/X_0~(1\,\text{mm})$
- as efficient as possible; close to $100\,\%$
- time resolution better than 500 ps
- up to 250 kHz/fibre; very limited space

The Fibre Detector: Overview

Components

- cylindrical at \sim 6 cm; 28-30 cm long
- 3-4 layers of $250\,\mu m$ fibres in 12 ribbons
- SiPM column arrays
- mixed mode ASIC: MuTRiG

Requirements

- as thin as possible; $\leq 0.5 \% \text{ X/X}_0 (1 \text{ mm})$
- as efficient as possible; close to $100\,\%$
- time resolution better than 500 ps
- up to 250 kHz/fibre; very limited space

The Fibre Detector: Mechanical Design

bottom line: very limited space

The Fibre Detector: Prototypes

4 layers, 250 μm fibres; in lab and at PSI PiM1 115-215 MeV/c, pre-amps + digitizer (DRS4) **Squared Fibres Round Fibres**

50 cm long fibres additional Al coating Saint Gobain BCF-12 Hamamatsu S13360-1350CS $(1.3 \times 1.3 \text{ mm}^2, 50 \mu\text{m} \text{ pitch, trenches})$

45 cm long fibres optional TiO₂ in glue Kuraray SCSF-81M Hamamastu S12571-050P $(1 \times 1 \text{ mm}^2, 50 \mu\text{m pitch})$

SiPM column arrays

			-		-	100 44 5	nie ne
	-		$2 \times$	64	colu	mns	Statistics and
1.	and the	inter	delete.	elelelel	elelelele	isisisisisis	isisisisisis.
				ANALAAL			
		1111	1000		a service	antatai-isin	********
	230		```				

(same sensors as LHCb)

The Fibre Detector: Squared Results

Time Resolution (single layer)

$$oldsymbol{\sigma} = (t_l - t_r)/2 = oldsymbol{700}$$
 ps

Efficiency

$arepsilon_{single}$ [%]	OR	AND
0.5 phe	97	71
1.5 phe	79	34

Number of Photons (single layer)

Summed photons from both sides. (0.5 phe, AND)

$arepsilon_{ ext{triple}}$ [%]	OR	AND
0.5 phe	>99	95
1.5 phe	97	67

The Fibre Detector: Round Results

Time Resolution (single layer)

AND

70*

*SP: 190 GeV/c protons

Number of Photons (single layer)

The Fibre Detector: Confirming Time Resolution Extrapolations

squared fibre prototype in lab and PSI PiM1 215 $\mbox{MeV/c}$ testbeam

Remarks

- confirms extrapolations (BVR47)
- tracks in experiment: additional angle in θ

 \rightarrow increased path length \rightarrow increased time resolution

- requirements fulfilled

The Fibre Detector: Fibre Characterization

Simulation indicates

defferent surfaces (glisur) **ideal**: perfect (polished, 1.) **real**: more realistic (ground, 0.985, 0.98, 0.5)

> $\lambda_{
> m ideal} pprox 1754\,
> m mm$ $\lambda_{
> m real} pprox 369\,
> m mm$

material	n	light loss	
		bare	AI
outer cladding	1.42		
optical cement	1.56	${\sim}40\%$	\leq 1 %
Araldite rapid	~ 1.5	${\sim}30\%$	\leq 1 %
optical grease	1.465	${\sim}20\%$	\leq 1 %

The Fibre Detector: Number Of Layers (squared) Implications on Tracking Impact on

Impact on Timing (from target region)

fibre detector efficiency

fibre detector time resolution

The Timing Detectors: Readout Electronics

mixed mode, \approx 50 ps timestamps high impedance, optional differential

Tiles: both Thresholds Fibres: only Timing-Threshold *"time mode"*

	STiC3.1	MuTRiG
	in use	received
		end Jan.
number of channels	64	32
LVDS speed [Mbit/s]	160	1250
8b/10b encoding	yes	yes
event size [bit]	48	47
time mode	-	26
event rate / chip [MHz]	~ 2.6	~ 20
time mode	-	~ 38
event rate / ch [kHz]	${\sim}40$	$\sim \! 650$
time mode	-	~ 1200
power per channel [mW]	35	35
size [mm × mm]	5x5	5x5
number of PLLs	2	1

The Fibre Detector: Outlook

Milestone	BVR 47	BVR 48
SiPM array selection	Q2/16	1
Full simulation and reconstruction of Fibre detector	Q3/16	1
Full Fibre characterization		1
SiPM radiation hardness	Q3/16	
Decision on fibre type (round or square) and SiPM	Q1/17	Q2/17
Construction of a technical prototype for the fibre	Q4/16	Q2/17
mechanics (attachment, cooling, services)		
Construction of a readout prototype including SiPM arrays,	Q4/16	Q3/17
PCB, power distribution and slow control		
Manufacturing and quality management strategy for fibre	Q1/17	Q3/17
ribbon/module production		
MuTRiG integration	Q2/17	Q3/17
Fibre readout integration into experiment DAQ and	Q2/17	Q3/17
slow control (Midas)		
Fibre detector alignment and calibration scheme	Q2/17	Q3/17
Full prototype (fully integrable)		Q1/18

The Tile Detector: Outlook

Milestone	BVR 47	BVR 48
R&D phase completed	1	
Full simulation and reconstruction of Tile detector	1	
prove SiPM radiation hardness with Sr90	Q2/16	1
detailed mechanical design and TileFEB design	Q4/16	1
prototype of support structure & cooling		Q2/17
prototype of TileFEB (with STiC3.1)		Q3/17
32 channel technical prototype		Q4/17
(support, cooling, FEB, STiC3.1)		
MuTRiG test and integration		Q4/17
develop QA scheme		Q1/18
Mass production strategy for scintillator tiles		Q1/18
Readout integration into DAQ and slow control		Q2/18
Full prototype		Q4/18

Appendix

The Fibre Detector: Optical Isolation

TiO_2 in glue

- crosstalk-reduction (ribbon dependent)
- 10-20 % yield increase (diffuse)
- ${\sim}10\,\%$ cluster size reduction

- significant cross-talk reduction
- \sim 60 % yield increase
 - (see. Fibre Characterization)

Multiple Coulomb Scattering

Caution: θ_0 with of Gaussian for central 98%. The larger tails are not described with this.

The Fibre Detector: Number Of Layers

Charge Identification

Time difference between fibre clusters assigned to **recurling** (long 8-hits track) as function of distance along trajectory. The upper branch corresponds to the correct charge assignment and direction of rotation and the lower branch to the wrong charge assignment.

Fibre Mediated Dark Counts (O(5%))

Fibre Properties

	round	square	
company	Kuraray	Saint-Gobain	
core	Polystyrene (PS)		
type	SCSF-81M	BCF12	
inner cladding	Acrylic (PMMA)	
outer cladding	Fluor-acr	ylic (FP)	
cladding [%]	3/1	4/2	
refractive index	1.59/1.49/1.42	1.60/1.49/1.42	
density [g/cm ³]	1.05/1.19/1.43	1.05	
light yield [ph/MeV]	~8000		
trapping efficiency [%]	5.4	7.3	
capture angle [deg]	26.7	27.4	
attenuation length [m]	>3.5	>2.7	
decay time [ns]	2.4	3.2	
emission peak [nm]	437	435	

SiPM

Hamamatsu S10943 (older version)

value property slightly below 55 V breakdown voltages $53.7 \text{ mV} \text{ K}^{-1}$ at 25° temperature coefficient $\sim 4\%$ crosstalk at $\Delta V = 2V$ crosstalk at $\Delta V = 4 V$ $\sim 16\%$ PDE peak 470 nm PDF at $\Delta V = 2.5 V$ 32% PDF at $\Delta V = 4.5$ V 45 % geometrical fill factor 61 % epoxy layer 100 µm to 120 µm

Radiation Damage

expectations:

- e^+/e^- flux: 0.9/1.7 MHz mm⁻²
- integrated flux per year: $0.8/1.4{\cdot}10^{10}~\text{e}^+/\text{e}^-\text{mm}^{-2}$
- dose per year: 55/97 mJ; 24/42 Gy

The Fibre Detector: Fibre Alignment Studies

 $\begin{array}{l} \textbf{Collimator} \\ \text{plexiglass, } 1 \times 1 \, \text{mm}^2 \ \text{hole} \\ \text{external trigger} \end{array}$

allows alignment studies of $\mathcal{O}(10\,\mu\text{m})$

The Fibre Detector: Fibre Attenuation Length $\lambda_{att} = \lambda_{att}(x, \lambda)$

Setup for use during series production UV LEDS (ref. PIN photodiode) Photodiade Mechanical support fber Comparison w/o Black Paint End polished End to suppress ladding mode and rear refection Ral: ~3 m All system mounted inside a black box measurement: intensity and spectrum sources: UV (285 nm); visible(405 nm) LEDs

Simulation

different surfaces (glisur)

ideal: perfect (polished, 1.)

real: more realistic (ground, 0.985, 0.98, 0.5)

The Fibre Detector: Fibre Characterization Setup

Stability of the LED + photodiode power meter: better than 1 % Also touching the mounted fiber affects the light transmission by at most 1 %

The Fibre Detector: Clustering

ieft side ↓ ↓ ↓ ↓ right side

clustering per side

- potentially on FPGA
- dark count reduction, bandwidth reduction

match sides

track to cluster matching

- current implementation $\varepsilon > 95 \%$
- tracking information: extract best timing (path length)

Event display at $\sim 10^8$ stopped muons/s in one 50 ns frame.

The Tile Detector

Saint Gobain BC418

- coated with TiO_2
- nominal yield 10 200 photons/MeV (mu3e: ~900)
- rise time 0.5 ns, decay time 1.4 ns
- emission peak 391 ns

The Tile Detector

MuTRiG

- UMC 180nm CMOS
- analog Front-End + TDC + digital part
- fully differential analog front-end
- high speed data link (1.28 Gbps)
- external trigger
- event counter for each channel, separate data path
- configurable data structure

PRBS + 8b/10b at 1.28 GHz:

