

Status and Reminder SciFi Simulation and Reconstruction

Simon Corrodi for the Mu3e Fibre group

8th February, 2017, Collaboration Meeting, PSI

Status: Simulation and Reconstruction

Simulation

- 3 layers of squared fibres, tuned to measurements
- most recent geometry (12: 30 cm long ribbons)
- waveform handling present, only used for dedicated studies
- many parameters: crosstalk in fibres, SiPM channels, SiPM pixel; noise, ...
- Attenuation length crosscheck

Reconstruction

- present by default
- results presented: obtained with full chain

Stand-Alone

bitbucket.org/corrodis/Mu3eFibres

The Fibre Detector: Squared Results

Time Resolution (single layer)

$$oldsymbol{\sigma} = (t_l - t_r)/2 = oldsymbol{700}$$
 ps

Efficiency

$arepsilon_{single}$ [%]	OR	AND
0.5 phe	97	71
1.5 phe	79	34

Number of Photons (single layer)

Summed photons from both sides. (0.5 phe, AND)

$arepsilon_{ ext{triple}}$ [%]	OR	AND
0.5 phe	>99	95
1.5 phe	97	67

The Fibre Detector: Simulation

Time Resolution (single layer)

Number of Photons (single layer)

Summed photons from both sides. (0.5 phe, AND)

Efficiency

$arepsilon_{single}$ [%]	OR	AND
0.5 phe	97 🗸	71 🗸
1.5 phe	79 🗸	$34 \sim 40 \%$

- simulated waveforms
- timing: constant fraction (CF)

The Fibre Detector: Clustering

ieft side

clustering per side

- potentially on FPGA
- dark count reduction, bandwidth reduction

match sides

track to cluster matching

- current implementation $\varepsilon > 99\%$
- tracking information: extract best timing (path length)

Event display at $\sim 10^8$ stopped muons/s in one 50 ns frame.

The Timing Detectors: Motivation

Situation

Fraction of reconstructed tracks (Michel decay, $\geq\!\!6\,\text{hits})$ with dominant timing from corresponding detector.

Impact: Background Suppression

Accidental: Bhabha pair + Michel

Impact: Charge Identification

Time resolution \leq 0.5 ns allows reliable charge identification for recurling (\geq 8 hits) tracks.

The Fibre Detector: Number Of Layers (squared) Implications on Tracking Impact on

Impact on Timing (from target region)

fibre detector efficiency

fibre detector time resolution

The Fibre Detector: Number Of Layers

Fibre Mediated Dark Counts (O(5%))

APPENDIX

Decay Time vs Light Yield

type	$ au_{ ext{decay}}$ [ns]	yield
BCF-12	3.2	
78M	2.8	\sim BCG-12
81M	2.4	< BCG-12

Charge Identification

Time difference between fibre clusters assigned to **recurling** (long 8-hits track) as function of distance along trajectory. The upper branch corresponds to the correct charge assignment and direction of rotation and the lower branch to the wrong charge assignment.