Summary of R\&D Activities Squared Scintillating Fibers

Giada and Angela for the SciFi Group
February $8^{\text {th }} 2017$
Mu3e Meeting @ PSI

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Back-of-the-envelope calculation for a 30 cm long $250 \mu \mathrm{~m}$ multiclad fiber
$<\mathrm{N}_{\text {Phe }}>=<\mathrm{S}><\mathrm{Q}><\mathrm{T}>$
Source term <S>
$\frac{8000 \text { photons }}{\mathrm{MeV}} \times \frac{2 \mathrm{MeV} \mathrm{cm}}{}{ }^{2} \times 1.05 \frac{\mathrm{~g}}{\mathrm{~cm}^{2}} \times 250 \mu \mathrm{~m}$
≈ 420 photons
Transmission term $<\mathrm{T}>$
$\frac{\delta \Omega}{4 \pi} \times e^{-L / L L_{\text {er }}}$
$\approx 2.6 \%$
Quantum efficiency <Q> ~ 40\%
$<\mathrm{N}_{\text {Phe }}>\approx 4.3$
photons

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Ingredients for maximum performance (from our experience):

- Fiber end polishing
- Optical isolation of the fiber
- Good fiber-SiPM-alignment

Optical Isolation

Fibers w/o optical isolation are subject to substantial light losses and fiber crosstalk

Light yield (Sr90 measurements)

Fiber crosstalk (Sr90 measurements)

"In situ" light loss measurements

Material	n	Light loss bare	Light loss alum.
Optical cement (BC600)	1.56	40%	$\leq 1 \%$
Araldite $^{\circledR}$	≈ 1.5	30%	$\leq 1 \%$
Optical grease (BC630)	1.47	20%	$\leq 1 \%$

Fiber-SiPM Alignment

Aligned every individual SiPM on the PCB prior to soldering

Overall alignment precision: 250-300 $\mu \mathrm{m}$

- Groove/ hole precision on plexiglass: 50-100 $\mu \mathrm{m}$
- Precision Hole: $50 \mu \mathrm{~m}$
- Pin holes on the SiPM PCB: $150 \mu \mathrm{~m}$
- SiPM active area w.r.t. packaging: $200 \mu \mathrm{~m}$

From MC simulations: Shifts up to $300 \mu \mathrm{~m}$ in both transverse directions affordable for $1.3 \times 1.3 \mathrm{~mm}^{2}$ SiPMs

[^0]
Squared Fiber Ribbons

- Quality control (blobs, thickness variations, cladding damage, ...)
- Fiber size: $240 \times 260 \mu \mathrm{~m}^{2} \rightarrow$ took special care about fiber orientation ($240 \mu \mathrm{~m}$ along beam)

Measured thickness and uniformity across a single fiber layer (256 fibers): $265 \pm 5 \mu \mathrm{~m}$

Fiber Alignment

Fiber alignment both within an individual and among several layers is already at a good level, could most probably be improved by further efforts

- Distances between fibers in y- direction 260-270 $\mu \mathrm{m}$, consistent with fiber size
- 1st, 2nd and 4th layer aligned within 10-20 $\mu \mathrm{m}$
- 3rd layer shifted by $\approx 55 \mu \mathrm{~m}$ compared to perfect staggering by half a cell

Collimated Sr90 source scans with Large Prototype

scan along y

R\&D History

Bottom-up-approach
Single fiber $\|=$ telescope structures

Extensive tests in the laboratory and at (mostly PSI) beam lines

The Large Prototype

The Large Prototype allowed to assess single- and multilayer efficiencies and timing resolutions, and to combine

Key Features

- 32 squared, $250 \mu \mathrm{~m}$ thin fibers with individual readout
- Aligned SiPMs
- Aluminum coating (100 nm)

Light Yield - Straight Tracks

Single Fiber Light Yield (Beam Test @ $\pi \mathrm{M} 1$)
Positrons @ 115 MeV/c
Mean $\mathbf{N}_{\text {Phe }} \approx 4.6$ (AND) and 3.7
(OR) with a threshold $0.5 \mathrm{~N}_{\text {Phe }}$

OR logic

SiPM logic AND

Uniform detector response

Light Yield - Inclined Tracks

Sr90 Laboratory Measurement
Increased light yield / inclination of tracks clearly visible and consistent with expectations

Theta Angle Measurements

Estimated single fiber detection efficiency @ $\theta=45^{\circ}: \varepsilon \approx 85 \%$

Phi Angle Measurements
$\phi=0^{\circ}$

Detection Efficiency

Single and Multilayer Efficiency (Beam Test @ пM1)
Positrons @ $115 \mathrm{MeV} / \mathrm{c}$

	Single Layer	Double Layer	Triple Layer	Extrapolated
$\varepsilon_{\text {AND }}$ [\%] (0.5 NPhe)	72 ± 1	89 ± 1	95 ± 2	Double
$\varepsilon_{O R}[\%](0.5$ NPhe)	96 ± 1	99 ± 1	98 ± 1	$\varepsilon_{\text {AND }} \approx 92 \%$
$\varepsilon_{A N D}$ [\%] (1.5 NPhe)	34 ± 1	52 ± 1	67 ± 1	Triple
$\varepsilon_{O R}[\%](1.5$ NPhe $)$	79 ± 1	93 ± 1	97 ± 1	$\varepsilon_{\text {AND }} \approx 98 \%$

> Measured a detection efficiency for MIP of $\geq 95 \%$ for three layers
> of $250 \times 250 \mu \mathrm{~m}^{2}$ squared multiclad scintillating fibers at a threshold of 0.5 NPhe

*The double and triple layer numbers represent lower limits to the detection efficiency

Timing Resolution

Single fiber timing resolution (Beam Test @ $\pi \mathrm{M} 1$)

- Positrons @ $115 \mathrm{MeV} / \mathrm{c}$
- Offline constant fraction discrimination (20\%), threshold $0.5 \mathrm{~N}_{\text {Phe }}$
- 30 dB preamplifiers

$$
\begin{gathered}
\sigma_{\text {core }} \approx 680 \mathrm{ps} \\
\sigma_{\text {tail }} \approx 2.23 \mathrm{~ns} \\
\mathrm{f}_{\text {core }} \approx 60 \%
\end{gathered}
$$

Tails are mainly due to single-photon-events!

Timing Resolution

Single fiber timing resolution (Beam Test @ $\pi \mathrm{M} 1$)

- Positrons @ $115 \mathrm{MeV} / \mathrm{c}$
- Offline constant fraction discrimination (20\%), threshold $0.5 \mathrm{~N}_{\text {Phe }}$
- 30 dB preamplifiers

$$
\begin{gathered}
\sigma_{\text {core }} \approx 680 \mathrm{ps} \\
\sigma_{\text {tail }} \approx 2.23 \mathrm{~ns} \\
\mathrm{f}_{\text {core }} \approx 60 \%
\end{gathered}
$$

40 dB preamplifiers (lab measurement)

Timing Resolution

Single fiber timing resolution (Laboratory Test)

- MI electrons from Sr90
- Offline constant fraction discrimination (20\%), threshold $0.5 \mathrm{~N}_{\text {Phe }}$
- 40 dB preamplifiers

$$
\begin{gathered}
\sigma_{\text {single }}=1120 \pm 10 \mathrm{ps} \\
\mathrm{RMS}_{\text {single }}=1160 \pm 5 \mathrm{ps}
\end{gathered}
$$

Timing Resolution

Single fiber timing resolution (Laboratory Test)

- MI electrons from Sr90
- Offline constant fraction discrimination (20\%), threshold $0.5 \mathrm{~N}_{\text {Phe }}$
- 40 dB preamplifiers

$$
\begin{gathered}
\sigma_{\text {single }}=1120 \pm 10 \mathrm{ps} \\
\mathrm{RMS}_{\text {single }}=1160 \pm 5 \mathrm{ps} \\
=820 \mathrm{ps} \\
=\mathrm{RMS}_{\text {single }} / \sqrt{2} \\
=670 \mathrm{ps}
\end{gathered} \sigma_{\text {double }}=820 \pm 3 \mathrm{ps} \xlongequal{\mathrm{RMS}_{\text {single }} / \sqrt{3}} \sigma_{\text {triple }}=673 \pm 4 \mathrm{ps}
$$

8/2/17

Temperature Dependence

Prototype V4.1: Temperature studies with Sr 90 source and thermal chamber @ $8^{\circ} \mathrm{C}, 16^{\circ} \mathrm{C}, 24^{\circ} \mathrm{C}$, $32^{\circ} \mathrm{C}$, SiPM gains equalized on a hardware-level:

Variations in detection efficiency and timing < 10\%

Single Fiber Light Yield

Single Fiber Timing

Extrapolation to Final Mu3e Hodoscope Performances

Mimic the Mu3e hodoscope by combining offline the SiPM channels of three consecutive fibers
§ "optimized" array readout

Optimized array readout:
-Good fiber-SiPM alignment
-Sufficiently large SiPM active area

- No saturation effects
i.e. maximum light collection capability

Optimized Array

Light Yield (Beam Test @ пM1)
Positrons @ $115 \mathrm{MeV} / \mathrm{c}$
Mean $\mathbf{N}_{\text {Phe }}=10.9 \pm 0.2$ (AND) and 10.6 ± 0.2 (OR) with a threshold $0.5 \mathrm{~N}_{\text {phe }}$

Optimized Array

Detection Efficiency (Beam Test @ $\quad \mathrm{M} 1$)
Positrons @ $115 \mathrm{MeV} / \mathrm{c}$

	Triple Layer
$\varepsilon_{A N D}^{\text {array }}$ [\%] (0.5 NPhe)	95.8 ± 0.2 (stat) \%
$\varepsilon_{O R}^{\text {array }}$ [\%] (0.5 NPhe)	98.3 ± 0.2 (stat) $\%$
$\varepsilon_{\text {AND }}^{\text {array }}$ [\%] (1.5 NPhe)	88.0 ± 0.3 (stat) \%
$\varepsilon_{O R}^{\text {array }}$ [\%] (1.5 NPhe)	97.5 ± 0.2 (stat) $\%$

Measured a detection efficiency for MIP of $\geq 95 \%$ for three layers
of $250 \times 250 \mu \mathrm{~m}^{2}$ squared multiclad scintillating fibers at a threshold of 0.5 NPhe

Optimized Array

Timing Resolution (Beam Test @ $\pi \mathrm{M} 1$)
Positrons @ $115 \mathrm{MeV} / \mathrm{c}$
Measured a detection efficiency for MIP of $\gtrsim 95 \%$ and a timing resolution of <1 ns for three layers of $250 \times 250 \mu \mathrm{~m}^{2}$ squared multiclad scintillating fibers at a threshold of 0.5 NPhe

Double Gaussian Fit Core fraction ≈ 75 \%

		Array
$\sigma_{t}[\mathrm{ps}]$	$(0.5$ NPhe $)$	572 ± 6
$\sigma_{t}[\mathrm{ps}]$	$(1.5$ NPhe $)$	537 ± 4

Optimized Array

Relative Detection Efficiency and Time Resolution (Laboratory Test)

MI electrons from Sr90
Relative detection efficiencies at the most extremal ($\pm 6 \mathrm{~cm}$) positions and the central position (0 cm) agreed within 6%.
Timing resolution agreed within 10% in the scanned interval.

Fiber length Large
Prototype: ~50 cm

Mu3e Meeting

Conclusion

Showed that the proposed detector performances (efficiency and timing) are achievable

Extensive Studies:

- Fiber and SiPM Characterization
- Optical Isolation
- Fiber alignment, mechanics
- Light yield (straight and inclined tracks)
- Single and multilayer detection efficiencies
- Single and multilayer timing
- Extrapolated detection efficiencies and timing
- Temperature studies
- Detection efficiency vs. impact position

[^0]: 8/2/1/

