Summary of R&D Activities Squared Scintillating Fibers

Giada and Angela for the SciFi Group February 8th 2017 Mu3e Meeting @ PSI

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Back-of-the-envelope calculation for a 30 cm long 250 µm multiclad fiber

The Challenge

Detect minimum ionizing particles at high efficiency and good timing with so little scintillating material

Ingredients for maximum performance (from our experience):

- Fiber end polishing
- Optical isolation of the fiber
- Good fiber-SiPM-alignment

Optical Isolation

Fibers w/o optical isolation are subject to substantial light losses and fiber crosstalk

Light yield (Sr90 measurements)

Fiber crosstalk (Sr90 measurements)

"In situ" light loss measurements

Material	n	Light loss bare	Light loss alum.
Optical cement (BC600)	1.56	40%	$\leq 1 \%$
Araldite [®]	≈ 1.5	30 %	$\leq 1 \%$
Optical grease (BC630)	1.47	20~%	$\leq 1 \%$

Fiber-SiPM Alignment

Aligned every individual SiPM on the PCB prior to soldering

Overall alignment precision: 250-300 µm

- Groove/ hole precision on plexiglass: 50-100 µm
- Precision Hole: 50 µm
- Pin holes on the SiPM PCB: 150 µm
- SiPM active area w.r.t. packaging: 200 µm

From MC simulations: Shifts up to 300 µm in both transverse directions affordable for 1.3 x 1.3 mm² SiPMs

200

180

160

140

120

100

80

60

c.f. Mu3e Meeting Oct '14

0020/02700

Squared Fiber Ribbons

- Quality control (blobs, thickness variations, cladding damage, ...)
- Fiber size: 240 x 260 µm² → took special care about fiber orientation (240 µm along beam)

Measured thickness and uniformity across a single fiber layer (256 fibers): 265 ± 5 µm

c.f. Mu3e Meeting Nov '15

Fiber Alignment

c.f. Mu3e Meeting May '16

Fiber alignment both within an individual and among several layers is already at a good level, could most probably be improved by further efforts

- Distances between fibers in y- direction 260-270 µm, consistent with fiber size
- 1st, 2nd and 4th layer aligned within 10-20 μm
- 3rd layer shifted by \approx 55 µm compared to perfect staggering by half a cell

Collimated Sr90 source scans with Large Prototype

R&D History

Bottom-up-approach Single fiber ➡ telescope structures

Extensive tests in the laboratory and at (mostly PSI) beam lines

The Large Prototype

c.f. Mu3e Meeting Nov '15

The Large Prototype allowed to assess **single- and multilayer efficiencies and timing resolutions**, and to combine channels offline to **emulate the SiPM array readout**

Key Features

- 32 squared, 250 µm thin fibers with individual readout
- Aligned SiPMs
- Aluminum coating (100 nm)

Light Yield – Straight Tracks

c.f. Mu3e Meeting Nov '15

Single Fiber Light Yield (Beam Test @ πM1)Positrons @ 115 MeV/cSiPM logic AND

Mean N_{Phe} ≈ 4.6 (AND) and 3.7 (OR) with a threshold 0.5 N_{Phe}

Mu3e Meeting

Light Yield – Inclined Tracks

c.f. Mu3e Meeting May '16

Sr90 Laboratory Measurement

Increased light yield / inclination of tracks clearly visible and consistent with expectations

Phi Angle Measurements

Detection Efficiency

Single and Multilayer Efficiency (Beam Test @ πM1) Positrons @ 115 MeV/c

	Single Layer	Double Layer	Triple Layer	*	Extrapolated
ε_{AND} [%] (0.5 NPhe)	72 ± 1	89 ± 1	95 ± 2		Double
ε_{OR} [%] (0.5 NPhe)	96 ± 1	99 ± 1	98 ± 1		ε _{AND} ≈ 92%
ε_{AND} [%] (1.5 NPhe)	34 ± 1	52 ± 1	67 ± 1		Triple
ε_{OR} [%] (1.5 NPhe)	79 ± 1	93 ± 1	97 ± 1		ε _{AND} ≈ 98%

Measured a detection efficiency for MIP of \gtrsim 95% for three layers of 250 x 250 µm² squared multiclad scintillating fibers

at a threshold of 0.5 NPhe

*The double and triple layer numbers represent lower limits to the detection efficiency

Single fiber timing resolution (Beam Test @ π M1)

14

Single fiber timing resolution (Beam Test @ π M1)

Single fiber timing resolution (Laboratory Test)

- MI electrons from Sr90
- Offline constant fraction discrimination (20%). threshold 0.5 N_{Phe}
- 40 dB preamplifiers

8/2/17

Mu3e Meetina

Using the 40 dB preamplifiers the tails are gone

Single fiber timing resolution (Laboratory Test)

Temperature Dependence c.f. Mu3e Meeting May '15

Prototype V4.1: Temperature studies with Sr90 source and thermal chamber @ 8°C, 16°C, 24°C, 32°C, SiPM gains equalized on a hardware-level:

Variations in detection efficiency and timing < 10%

Extrapolation to Final Mu3e Hodoscope Performances

c.f. Mu3e Meeting Nov '15

Mimic the Mu3e hodoscope by combining offline the SiPM channels of three consecutive fibers

Optimized array readout: •Good fiber-SiPM alignment •Sufficiently large SiPM active area •No saturation effects

i.e. maximum light collection capability

real

c.f. Mu3e Meeting Nov '15

Light Yield (Beam Test @ πM1) Positrons @ 115 MeV/c

Mean N_{Phe} = 10.9 ± 0.2 (AND) and 10.6 ± 0.2 (OR) with a threshold 0.5 $\rm N_{phe}$

20

c.f. Mu3e Meeting Nov '15

Detection Efficiency (Beam Test @ πM1) Positrons @ 115 MeV/c

Measured a detection efficiency for MIP of ≥ 95% for three layers of 250 x 250 µm² squared multiclad scintillating fibers at a threshold of 0.5 NPhe

Timing Resolution (Beam Test @ πM1) Positrons @ 115 MeV/c

Measured a detection efficiency for MIP of ≥ **95% and a timing resolution of < 1ns for three layers** of 250 x 250 µm² squared multiclad scintillating fibers at a threshold of 0.5 NPhe

Double Gaussian Fit Core fraction ≈ 75 %

		Array
σ_t [ps]	(0.5 NPhe)	572 ± 6
σ_t [ps]	(1.5 NPhe)	537 ± 4

Relative Detection Efficiency and Time Resolution (Laboratory Test) MI electrons from Sr90

Relative detection efficiencies at the most extremal (± 6 cm) positions and the central position (0 cm) agreed **within 6%. Timing resolution** agreed **within 10%** in the scanned interval.

Conclusion

Showed that the proposed detector performances (efficiency and timing) are achievable

Extensive Studies:

- Fiber and SiPM Characterization
- Optical Isolation
- Fiber alignment, mechanics
- Light yield (straight and inclined tracks)
- Single and multilayer detection efficiencies
- Single and multilayer timing
- Extrapolated detection efficiencies and timing
- Temperature studies
- Detection efficiency vs. impact position

