

Comprehensive Analysis of Micro-Bunching Instabilities using Machine Learning

Tobias Boltz, Miriam Brosi, Erik Bründermann, Florian Rämisch, Patrik Schönfeldt, Markus Schwarz, Minjie Yan and Anke-Susanne Müller | July 4, 2017

Laboratory for Applications of Synchrotron Radiation (LAS)

KIT - The Research University in the Helmholtz Association

Outline

Motivation

- Introduction of the Clustering Method k-means
- Pre-Processing
- Analysis of Micro-Structure Dynamics
- Analysis of Further Characteristics
- Outlook

- operation of storage rings with short electron bunches increases coherent synchrotron radiation (CSR) power
- leads to micro-structure dynamics within the bunch
- indirect measurement: resulting fluctuations in the emitted CSR power
- direct measurement: electron distribution, difficult due to the small scale of the micro-structures
- \Rightarrow simulation of longitudinal dynamics with the simulation code Inovesa

Schönfeldt, P. *et al.* Parallelized Vlasov-Fokker-Planck solver for desktop personal computers. *Phys. Rev. Accel. Beams* **20** (2017)

Motivation Measured Fluctuations of the CSR power (Bursting)

 \Rightarrow fluctuations occur with characteristic frequencies

Data taken at ANKA, courtesy of Miriam Brosi

Motivation Measured Bursting Spectrogram

Data taken at ANKA, courtesy of Miriam Brosi

Motivation Simulated Bursting Spectrogram

- identify micro-structures on the simulated longitudinal bunch profiles
- correlate findings to the emitted synchrotron radiation, i.e. the CSR power spectrogram
 - ⇒ large amounts of data to analyze!
 (151 bunch currents with 10 000 time steps each,
 i.e. 1.5 million bunch profiles in the simulation data set)
 - ⇒ application of the machine learning technique *k*-means to reveal micro-structures within a fixed bunch current

Clustering method k-means

Principle of the k-means algorithm

the data set

initialization

iter. #1: assignment

iter. #1: update

iter. #2: assignment

iter. #2: update

Clustering method k-means

Introduction

- clustering is an example of unsupervised learning, a sub field of machine learning
- can be used as an exploratory tool of data analysis to reveal underlying structure
- the *k*-means method is one of many different clustering algorithms
- relatively simple procedure which can be understood intuitively
- aims to achieve an appropriate categorization of the given data set
- number of categories or clusters *k* is a free parameter
- cluster means can be used as reasonable representatives to analyze the found clusters

Pre-Processing

Initial Application of k-means

Pre-Processing

After Re-Centering Procedure

Analysis of Micro-Structure Dynamics

Analysis of Micro-Structure Dynamics

Different Bursting Regimes

Cluster Centers, $I_{reg} = 0.88 \text{ mA}, k = 2$

Cluster Centers Ref. to Mean, $I_{reg} = 0.88 \text{ mA}, k = 2$

Cluster Centers Ref. to Mean, $I_{reg} = 0.88 \text{ mA}$, k = 4

Correlation to CSR Power, $I_{reg} = 0.88 \text{ mA}, k = 2$

Correlation to CSR Power, $I_{reg} = 0.88 \text{ mA}, k = 2$

Longitudinal Phase Space, $I_{reg} = 0.88 \text{ mA}, k = 2$

Longitudinal Phase Space, $I_{reg} = 0.88 \text{ mA}, k = 2$

Analysis of Micro-Structure Dynamics

Different Bursting Regimes

Cluster Centers, $I_{saw} = 1.15 \text{ mA}, k = 4$

Cluster Centers Ref. to Mean, $I_{saw} = 1.15 \text{ mA}, k = 4$

Correlation to CSR Power, $I_{saw} = 1.15 \text{ mA}, k = 4$

Correlation to CSR Power, $I_{saw} = 1.15 \text{ mA}, k = 4$

Correlation to CSR Power, $I_{saw} = 1.15 \text{ mA}, k = 4$

Longitudinal Phase Space, $I_{saw} = 1.15 \text{ mA}, k = 4$

Longitudinal Phase Space, $I_{saw} = 1.15 \text{ mA}, k = 4$

Longitudinal Phase Space, $I_{saw} = 1.15 \text{ mA}, k = 4$

Modulation Frequencies for all Bunch Currents

Modulation Frequencies for all Bunch Currents

Modulation Amplitudes for all Bunch Currents

Modulation Amplitudes for all Bunch Currents

Correlation of Modulation Frequency and Amplitude

- f_{mod} > 75 GHz colored red
- same color scheme applied to modulation amplitudes A_{mod}

Cluster Label Spectrogram

Spectral Analysis of Categorical Time Series

Stoffer, D. S. *et al.* Spectral analysis for categorical time series: Scaling and the spectral envelope. *Biometrika* **80**, 611–622 (1993)

Analysis of Further Characteristics

Dynamics of a Localized Charge Density

Charge Density at CoM Position, $I_{reg} = 0.88 \text{ mA}$

- analysis of temporal changes of the charge density at a fixed position within the electron bunch
- the gained time signal resembles the corresponding CSR power signal

Dynamics of a Localized Charge Density

Spectrogram for CoM Position

Dynamics of a Localized Charge Density

Spectrogram for a Position far away from CoM

Low Current Bursting

2nd Data Set: CSR Power Spectrogram

Low Current Bursting

Longitudinal Phase Space, $I_{low} = 20 \,\mu A$, k = 2

- micro-structures in the low current bursting regime look similar as well
- however, there is one structure less than for the regimes above!

Vacuum Chamber Height

Ref. Cluster Centers, $I_{\text{bunch}} = 1.4 \text{ mA}$, k = 2, g' = 0.5 g

Vacuum Chamber Height

Long. Phase Space, $I_{\text{bunch}} = 1.4 \text{ mA}$, k = 2, g' = 0.5 g

Outlook

Outlook Ideas and Open Questions

- modulation frequencies are very similar across different bunch currents, but show a slight decay
 - \Rightarrow Where does this come from?
 - \Rightarrow Does it maybe depend on changes in the bunch length?
- systematic studies of the *f*_{mod} dependence on different parameters,
 e.g. the vacuum chamber height or bending radius
- reproduce these results on measured data (EO setup)
- additional ideas/suggestions?

Outlook Ideas and Open Questions

- modulation frequencies are very similar across different bunch currents, but show a slight decay
 - \Rightarrow Where does this come from?
 - \Rightarrow Does it maybe depend on changes in the bunch length?
- systematic studies of the f_{mod} dependence on different parameters,
 e.g. the vacuum chamber height or bending radius
- reproduce these results on measured data (EO setup)
- additional ideas/suggestions?

Thank you for your attention!

Backup

Simulation Parameters

1st Data Set

Physical parameter	Value
RF voltage U_0 revolution frequency f_{rev} synchrotron frequency f_s damping time τ_d harmonic number h parallel plates distance g initial electron distribution $\varphi(z, E, t_0)$ simulation time t	1 MV 9 MHz 30 kHz 5 ms 50 3.2 cm 2-dim. Gaussian 250 $T_{\rm s}$
bunch current Ibunch	0.5 mA to 2.0 mA
Control parameter	Value
grid size n _{grid} time steps n _{steps}	256 10 000

Simulation Parameters

2nd Data Set

Physical parameter	Value
RF voltage U_0 revolution frequency f_{rev} synchrotron frequency f_s damping time τ_d harmonic number h parallel plates distance g initial electron distribution $\varphi(z, E, t_0)$ simulation time t	1.3 MV 2.72 MHz 5.76 kHz 2.66 ms 184 3.2 cm 2-dim. Gaussian 500 <i>T</i> _s
bunch current <i>I</i> _{bunch}	$0.5\mu\text{A}$ to $200\mu\text{A}$
Control parameter	Value
grid size <i>n</i> _{grid} time steps <i>n</i> _{steps}	256 10 000

Micro-Structures on Energy Profiles

Cluster Centers Ref. to Mean, $I_{reg} = 0.88 \text{ mA}, k = 4$

- Title: Comprehensive Analysis of Micro-Structure Dynamics in Longitudinal Electron Bunch Profiles s
- Author: Tobias Boltz
- Date: March 17, 2017
- Published in KITopen:

https://publikationen.bibliothek.kit.edu/1000068253