

- Quench: transition from the superconducting to the normal-conducting state
 - Once quench occurs, if heating > cooling \rightarrow propagation of normal zone

- SC: high normal-state resistivity \rightarrow reach a very high T in few ms in a quench
- Cu: low resistivity \rightarrow current redistributes in Cu matrix \rightarrow a lower T
 - Provide time to act on power circuit
 - Stabilize the conductor against flux jumps

Quench Protection

- Detection: R_{quench}
 ¬ Joule heating in the copper, causing T
 ¬ in the normalconductivity zone
- Protection: After detection (power switched off), the magnet can be seen as an LR circuit $I(t) = I_0 e^{-t\frac{R(t)}{L}}$
 - Dissipate the magnetic energy as heat
 - Quench the entire coil by increasing the normal zone (maximize *R* to decrease *I*)
 - Goal: limit peak temperature and voltage to ground to avoid damage in the coil
- Different phases in a quench:
 - I constant, heat propagation:

Quench Protection

- Typical values for a quench protection system:
 - Detection time: 5-20 ms for a voltage threshold \sim 100 mV
 - Validation time: 5-20 ms to avoid false triggers
 - Switch opening for discharge: 5 ms
 - Switch opening for quench heaters: 2 ms
 - Heater delay time (10-40 ms) from strip to cable, then propagate, additional time in the low field area, between different layers...
- Magnet design efficiency: less time less Cu fraction smaller coil

- Simulations:
 - Study quench propagation and different protection methods in 2D/3D models for two-/four-layer CCT magnet CCT to improve the protection delay time.
- Experiments:
 - Get necessary components in advance and install them properly;
 - Study LBNL's instrumentation and interface to solve the compatibility and connection issues;
 - Interpret test results and compare with simulations.

Protection Concepts for CD1

- Detection:
 - Co-wound Cu wire (d = 0.1 mm): voltage measurements affected by flux jumps and electromagnetic fluctuations $\rightarrow \Delta t_{val}$ obligatory
 - Co-wound optical fiber: temperature and strain data from analysis of spectral shift; high risk but we expect to eliminate Δt_{val} for a shorter delay time; collaboration with North Carolina State University (NCSU)
- Protection:
 - Energy extraction ($R_{dump} = 0.04$ ohm): suitable for a single-magnet system; basic method for R&D magnets - Coupling-Loss Induced Quench (CLIQ): *I* oscillations \rightarrow coupling losses (heat) \rightarrow quench; most promising method

- Diagnostics:
 - Spot heater: produce heat to trigger a quench
 - Acoustic emission sensor: sound like resin cracks can be heard

Courtesy of E. Ravaioli

