
Tile Detector

BVR 49, PSI February 12, 2018

Yonathan Munwes on behalf of the Tile Detector group

Detector Overview

Requirements

- Detection efficiency close to 100%
- Time resolution better than 100 ps
- Maximum hit rate up to 60 kHz/channel
- Enough energy resolution for time walk correction

Background suppression factor

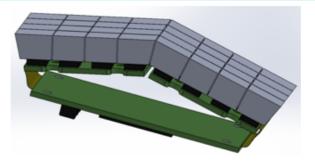
Tracker hits	Fibers	Tiles	Both
≧ 4	35	5.3	72
≧ 6	44	5.3	102

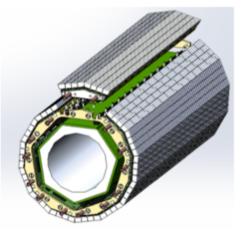
Detector Overview

<u>Submodule</u>

- In total 32 channel
- 3x3 mm² SiPMs
- FEBA flex printed PCB
- MuTrig ASIC in BGA package
- Scintillator tiles Ej-228
 - ~6.5x6.5x5 mm³, two type (center and edge)
- ESR reflected foil, individual tile wrapping

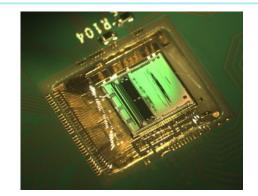
<u>Moudule</u>

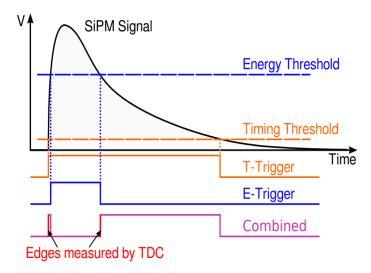

- 14 submodule mounted on the cooling structure
- Water cooling
- 448 channels


Recurl station

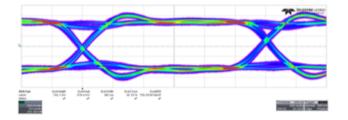
- 7 modules mounted on end rings
- Total length 368 cm
- 3136 channels

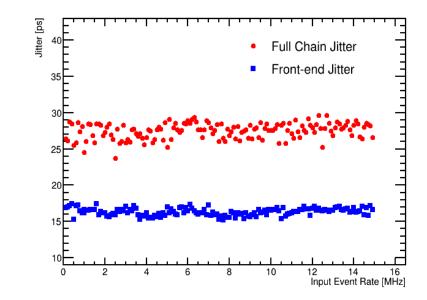
Full detector phase I


• 2 recurl station - total of 6272 channels



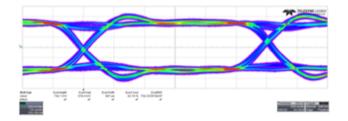
MuTrig ASIC status

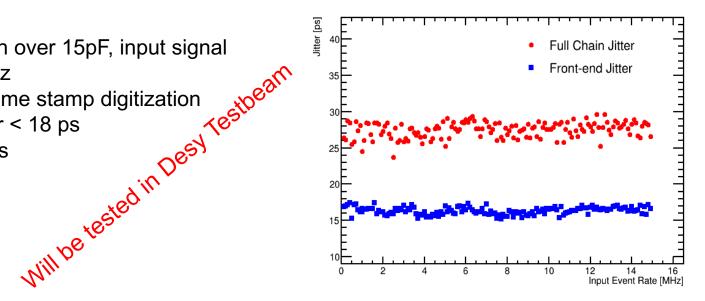

- 32 channels successor of STiCv3 same front-end
- Preserve the timing performance of STiC 3.1
- Increase the event rate capability
 - Gigabit serial data link (1.25 Gbps)
 - Switchable event length
- Add more digital functionalities (with compare to STiC 3.1)



MuTrig characterization

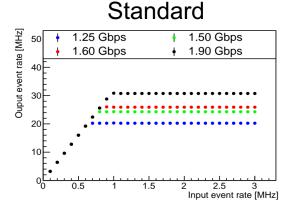
- Customized LVDS TX: Opened eye diagram with 8b/10b encoded RPBS data pattern @ 1.25 Gbps
- Bit Error Rate (BER) upper limit of O(10⁻¹⁵) for bit rate up to 1.9 Gbps.
- 460 fC charge injection over 15pF, input signal frequency up to 15MHz
- Use on-chip TDC for time stamp digitization
- Analog Fornt-End jitter < 18 ps
- Full Chain jitter < 31 ps



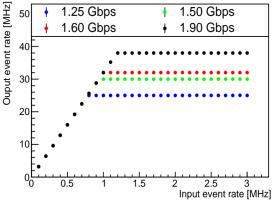

MuTrig characterization

- Customized LVDS TX: Opened eye diagram with 8b/10b encoded RPBS data pattern @ 1.25 Gbps
- Bit Error Rate (BER) upper limit of O(10⁻¹⁵) for bit rate up to 1.9 Gbps.

- Use on-chip TDC for time stamp digitization
- Analog Fornt-End jitter < 18 ps
- Full Chain jitter < 31 ps

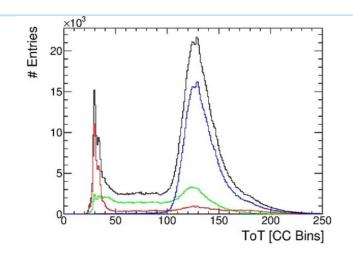


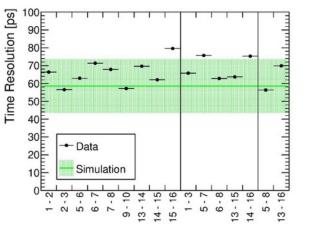
Digital Functionality Verification Results


Two readout option:

- 48 bit/event:
 - both time and energy info
 - Event Rate limit: 20.24 MHz (632 kHz/ch)
 - Limited by the serial data link rate
- 27 bit/event:
 - time info. + 1 bit energy info.
 - Event rate limit: 25 MHz (781 kHz/ch) @ 1.25 Gbps
 - · Limited by the on-chip digital circuit (will be fixed in the next tape-out)
 - Expected event rate limit: 35MHz (1.1MHz/channel)

Bit rate	SER_CLK freq.	Max. Event Rate (std event)	Max. Event Rate (short event)
1.25 Gbps	625 MHz	20.24 MHz (632 kHz/ch)	25 MHz (781 kHz/ch)
1.50 Gbps	750 MHz	24.29 MHz (759 kHz/ch)	30 MHz (938 kHz/ch)
1.60 Gbps	800 MHz	25.91 MHz (810 kHz/ch)	32 MHz (1 MHz/ch)
1.90 Gbps	950 MHz	30.77 MHz (962 kHz/ch)	38 MHz (1.188 MHz/ch)
			February 12, 2018

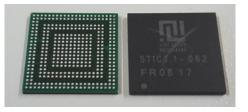


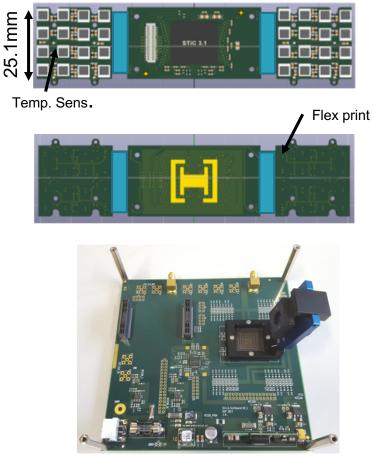


Old Prototype – Reminder

- From ToT "energy" spectrum ->time walk correction
- Showed excellent time resolution σ =70 ps
- STiC2 "feature" caused lower efficiency

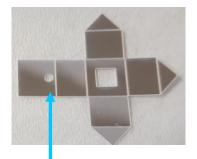
	Old Prototype	Current Prototype	Reason	Expected Impact	
ASIC	STiC V2	STiC V3.1	Bug fix,	DNL correction possible (can shift Higher Efficiency	
Tile Size	8.5x7.5x5.0 mm ³	6.5x6.5x5.0 mm ³	Shorter Module	Smaller light yield – worse time resolution	
Scintillator	BC408	BC418/Ej-228	Faster rise time	Better time resolution	
Scintillator coating	TiO_2 paint (5 sides)	ESR foil	Higher light yield/less CT	Better time resolution	
SiPM/ Scintillator coupling	Optical grease	Optical clear adhesive	must	Better light yield	

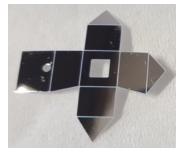

The technical prototype: Overview


<u>Goals</u>

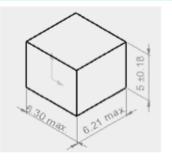
- Produce a module as close to design as possible
- Test mechanical support
- ASiC integration
- Cooling tests
- Learn and develop tools for assembly
- Develop test benches for detector characterization and quality control
- Measure detector performance
- Finalize detector design

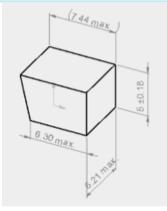
The technical prototype: Front-end board


- Develop and produce the front-end board in the summer 2017
- Using the STiC 3.1 packaged ASIC (not MuTrig)
- Hamamatsu SiPMs S13360-3050PE
- New test board to test the packaged chips before assembly
 - Charge injection test: functionality and noise performance

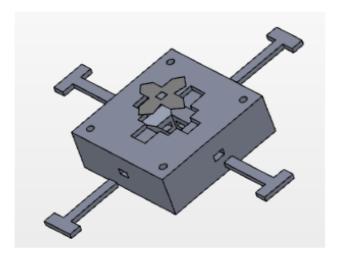


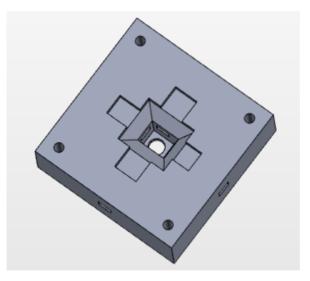
Tile production and wrapping


- Scintillator material Ej-228 (equivalent to BC-418)
- KIP workshop produced 180 tiles
- Foil design to maximize reflection (ESR 3M foil)

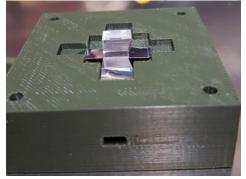


Hole for monitoring the glue quality



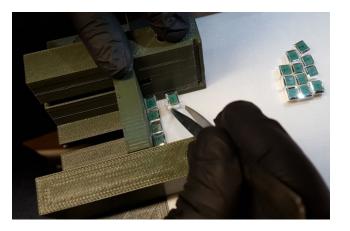


The technical prototype: Tile Wrapping


Wrapping tools:

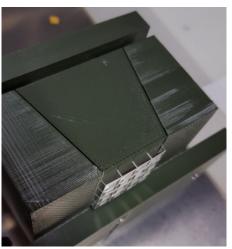
- Produce two for different type of tile
- Assembly of half module (16 channels) ~30min

The technical prototype: Tile Wrapping work flow



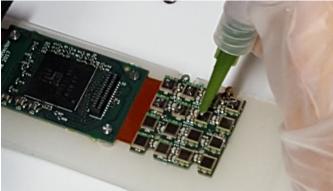
- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing

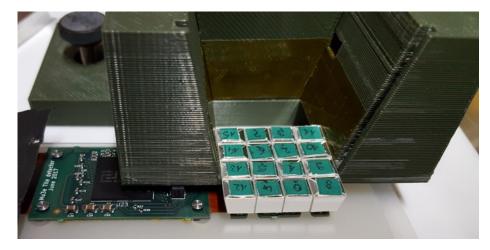
- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- · Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing


- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- · Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing

February 12, 2018

- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- · Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing


- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- · Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing


- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- · Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing

- Testing the ASIC and fully equipped the PCB (electronic lab)
- First measurement (DCR, Laser)
- Using micrometer for tolerance check of the tile size before wrapping
- Tile wrapping
- Glue 16 channel together, to avoid tolerance issues
- Dispense glue
- Monitor for bubbles after 24h of curing

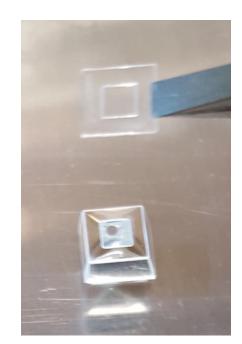
February 12, 2018

Submodule assembly - Glue issues

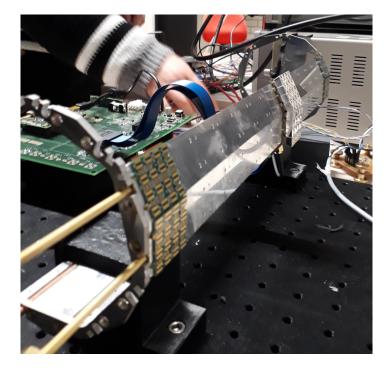

- Very important to monitor for bubbles can reduce light yield by 50%
- After several trial, updates assembly tools and find the correct amount of glue, we managed to have a full matrix without bubbles
- New solution under test:
 - 3M OCA- layer of adhesive 125um protective film from both sides (125um)
 - Cut desired shape using the laser cutter
 - Only press, no bubbles!

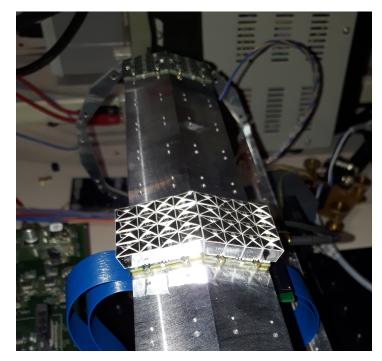
Submodule assembly - new glue solution

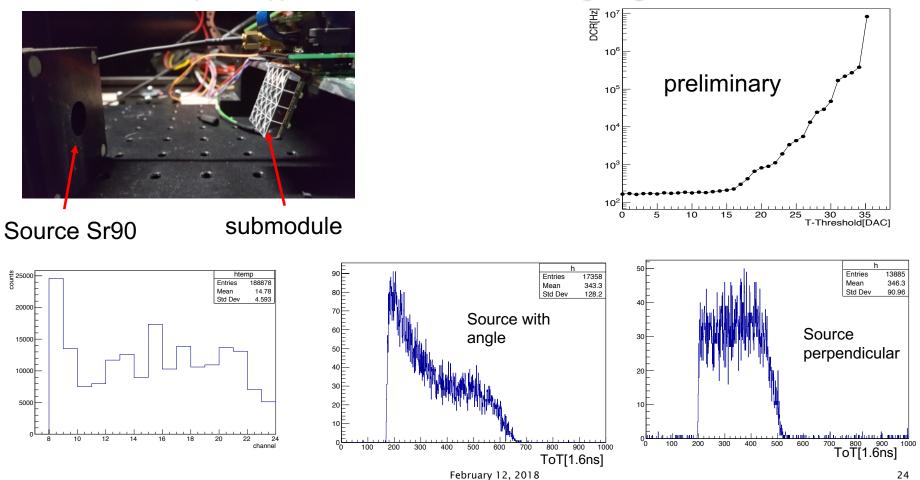
<u>Pros</u>


- Save most of the cure time
- The process is more uniform
- Match one-to-one to tile
- No bubbles!

<u>Cons</u>

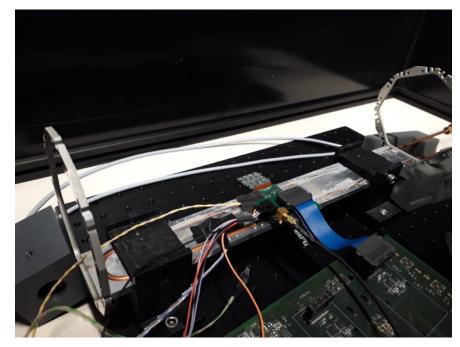

- Assemble under microscope (can be improve)
- Currently Slower process
- Min purchase 60cmx180m


• Testing light yield for both glues (ongoing)

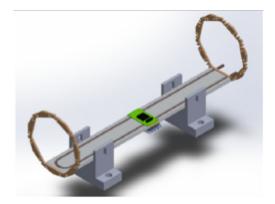

The technical prototype: Production status

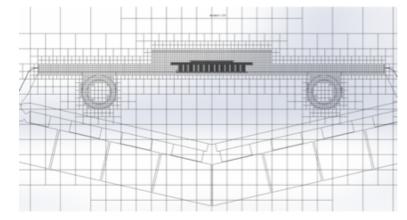
- Mechanics endrings + 3 cooling support structure
- In Total we fully assembled 3 submodules (96 channels)
- Stand alone module 16 channel, readout MuTrig/Scope (see following slides)

The technical prototype: Lab measurements ongoing

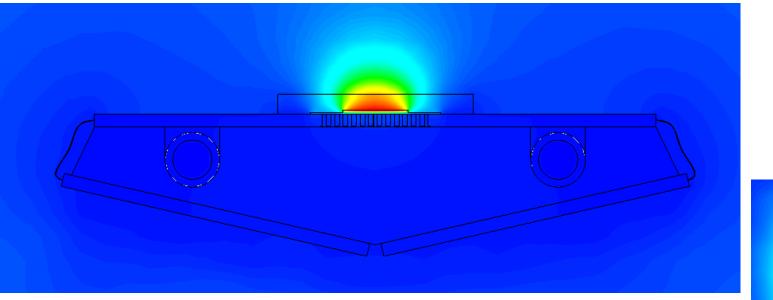


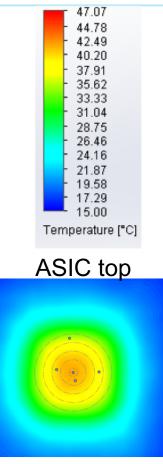
<u>Aim</u>

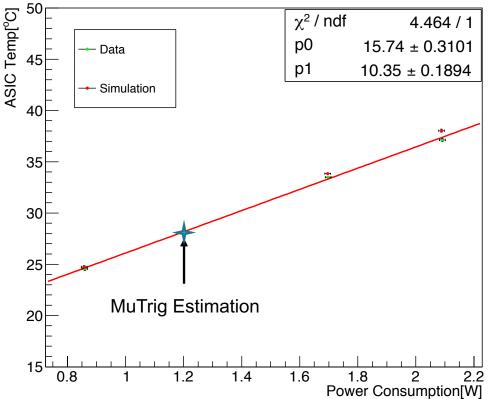

- Test the current mechanical design under lab condition
- Thermal simulation of full device under lab condition
- Extrapolate to experiment condition
- Once the simulation is reliable, test feasibility for different design modification needed (see integration talk)


Lab setup

- Single submodule + mechanical structure
- Temperature sensors- on ASIC, lab, water in/out, cooling plate
- Measure water flow speed
- Tested at different ASIC conditions (different power consumption)

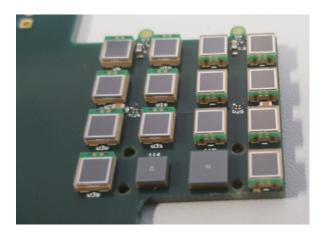



- Flow simulation in SolidWorks
- Construct the same setup as the lab setup
- Build a realistic model of the package ASIC and the PCB (include the thermal vias)
- Input (from lab measurements):
 - water temperature in 15°C
 - lab temp 21°C
 - Water flow peak 1m/s (0.63m/s on average)
 - ASIC power consumption (same as table)
- · Measure the temperature of the top of the package



Example results for highest power consumption:

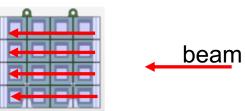
- Repeat at different power consumption of the ASIC
- Very good agreement to data (<1°C
- Small systematic error (Integration area of the temp. sensor is too small)
- Next step full module (ongoing)

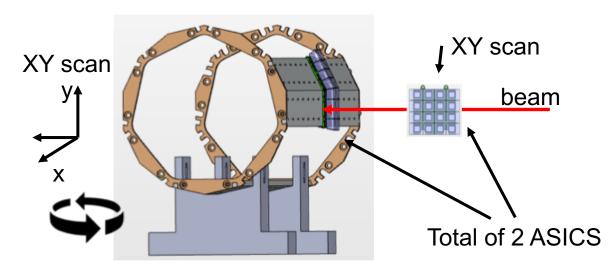


The technical prototype: test beam plans Goals Submodule

- Module calibration
- Time resolution with respect to incident angle
- Measure the detection efficiency and crosstalk

Stand alone setup


- Evaluate the performance of 2 new SiPMs: (hole wire bonding) 3x3 mm², 4x4 mm²
- Readout option:
 - MuTrig evaluation board
 - Scope



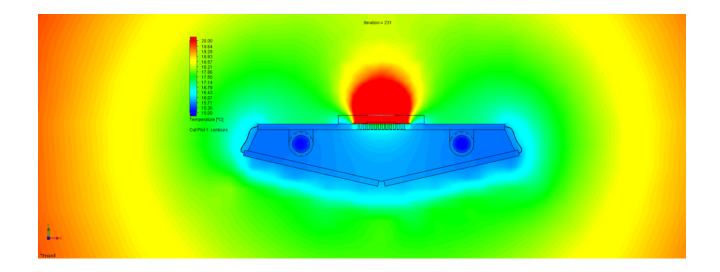
The technical prototype: test beam Setup

<u>Trigger</u>

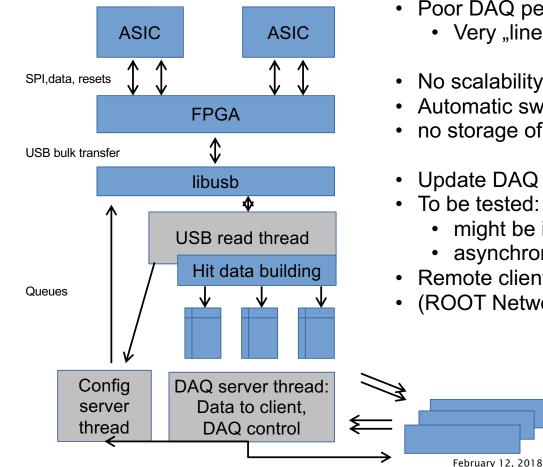
- ~6.5x5.0mm² x4
- T= $\Sigma t_i/4$, $\sigma = \sigma_i/2$
- Larger energy deposition

Outlook 2018

Milestone	BVR 48	BVR 49
Prototype of support structure & cooling	Q2/17	\checkmark
prototype of TileFEB (with STiC3.1)	Q3/17	\checkmark
32 channel technical prototype (support, cooling, FEB, STiC3.1)	Q4/17	√ (96 ch)
MuTRiG test	Q4/17	\checkmark
MuTrig Integration	Q4/17	Q3/18
Develop QA scheme	Q1/18	Q2/18
Mass production strategy	Q1/18	Q2/18
Readout integration into DAQ and slow control	Q2/18	Q3/18
Cooling simulation for full detector		Q1/18
Full prototype -modified mechanics, MuTrig	Q4/18	Q4/18*


*based on funds

Expected starting at March 2019


Production step	Schedule	comments
Tile production	Q2 2019	3 month
Mechanical production	Q2 2019	3 month
PCB assembly+ASIC testing	Q2 2019	196 boards
Submodule assembly	Q3 2019	4 a day total of 10 weeks
commissioning	Q4 2019	4 month

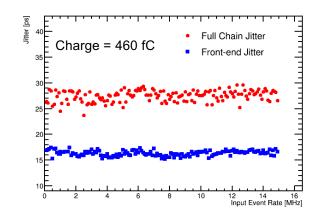
- MuTrig ASIC is working!
- Technical prototype produced with 96 working channels!
- Assembly tools were design and tested, will be finalize for mass production soon
- Detector performance will be tested next week (DESY)
- Full prototype including MuTrig and DAQ integration is expected this year!
- Will be ready for the vertical slice demonstrator by the end of the year!

BK slides

The technical prototype: test beam DAQ scheme

- Poor DAQ performance compared to USB limit
 - Very "linear" code (some sleep statements)
- No scalability for online monitoring
- Automatic sweeps not really possible,
- no storage of run conditions
- Update DAQ to a server client, parallelized system
- To be tested: USB transfer rate
 - might be improved greatly using libusb's
 - asynchronous interface
- Remote clients receive (prescaled) data over TCP

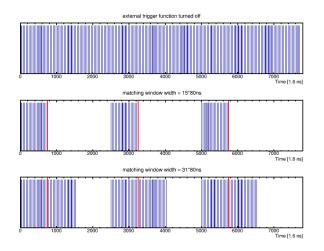
DAQ clients


(ROOT Network I/O)

Timing Performance Characterization Results

Analog Front-End Jitter Performance Jitter [ps Only FE + FPGA Ref. Clk Power On Ser. Link Clk 30 1 p.e. (Mu3e Fibre 200 300 400 500 600 700 800 900 Input Charge [fC]

- Charge injection over 15pF Capacitance
- Only analog FE: FE Jitter < 11 ps for charges > 500
 fC
- Full operation: FE Jitter < 18 ps for charges > 500 fC
- Degradation due to digital activity (pollution over PCB)


Full-Chain Jitter Performance

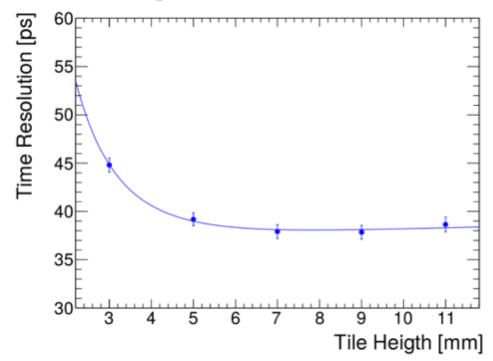
- 460fC charge injection over 15pF, input signal frequency up to 15MHz
- Use on-chip TDC for time stamp digitization
- FE jitter < 18 ps
- FC jitter < 31 ps

Digital Functionality Verification Results

Validation of the External Trigger Functionality

Event distribution in one data frame for different external trigger configurations

Serial data link quality characterization


- Customized LVDS TX: Opened eye diagram with 8b/10b encoded RPBS data pattern @ 1.25 Gbps
- Bit Error Rate (BER) upper limit of

Bit rate	BER
1.25 Gbps	< 5.90E-15
1.50 Gbps	< 4.34E-15
1.60 Gbps	< 4.63E-15
1.90 Gbps	< 3.65E-15

- 5 power lines
- 14x(2x spi, 2x reset, 2xcec * ,4xclock_diff ,2xdata ,2xpll_test_diff, external trigger *,2xl2C,2xHV)
- Shared (2x SPI) x7
- Total of 1911 per recurl station (294 are optional)

Time resolution for different tile height

- the time resolution is not dominated by photon statistics (for which black might maybe be better) but by noise - so we want as much signal as possible.
- reflected photons arrive only a couple of 10 picoseconds later because the tile is so small
 February 12, 2018